內蒙古赤峰市聯盟校會重點達標名校2022年中考數學最后沖刺模擬試卷含解析_第1頁
內蒙古赤峰市聯盟校會重點達標名校2022年中考數學最后沖刺模擬試卷含解析_第2頁
內蒙古赤峰市聯盟校會重點達標名校2022年中考數學最后沖刺模擬試卷含解析_第3頁
內蒙古赤峰市聯盟校會重點達標名校2022年中考數學最后沖刺模擬試卷含解析_第4頁
內蒙古赤峰市聯盟校會重點達標名校2022年中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.在正方體的表面上畫有如圖1中所示的粗線,圖2是其展開圖的示意圖,但只在A面上畫有粗線,那么將圖1中剩余兩個面中的粗線畫入圖2中,畫法正確的是()A. B. C. D.2.若一個多邊形的內角和為360°,則這個多邊形的邊數是(

)A.3

B.4

C.5

D.63.菱形的兩條對角線長分別是6cm和8cm,則它的面積是()A.6cm2 B.12cm2 C.24cm2 D.48cm24.吉林市面積約為27100平方公里,將27100這個數用科學記數法表示為()A.27.1×102B.2.71×103C.2.71×104D.0.271×1055.不等式組的解集在數軸上表示正確的是()A. B.C. D.6.若|a|=﹣a,則a為()A.a是負數 B.a是正數 C.a=0 D.負數或零7.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.8.如圖,在平面直角坐標系中,正方形的頂點在軸上,且,,則正方形的面積是()A. B. C. D.9.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設一個??奎c,為使所有的人步行到??奎c的路程之和最小,那么該停靠點的位置應設在()A.點A B.點B C.A,B之間 D.B,C之間10.如圖,在△ABC中,BC=8,AB的中垂線交BC于D,AC的中垂線交BC于E,則△ADE的周長等于()A.8 B.4 C.12 D.16二、填空題(本大題共6個小題,每小題3分,共18分)11.某航班每次飛行約有111名乘客,若飛機失事的概率為p=1.11115,一家保險公司要為乘客保險,許諾飛機一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險公司應向每位乘客至少收取_____元保險費才能保證不虧本.12.如圖,在△ABC中,∠A=70°,∠B=50°,點D,E分別為AB,AC上的點,沿DE折疊,使點A落在BC邊上點F處,若△EFC為直角三角形,則∠BDF的度數為______.13.如圖,這是懷柔區(qū)部分景點的分布圖,若表示百泉山風景區(qū)的點的坐標為,表示慕田峪長城的點的坐標為,則表示雁棲湖的點的坐標為______.14.如圖,四邊形ABCD與四邊形EFGH位似,位似中心點是點O,,則=_____.15.將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.16.2018年貴州省公務員、人民警察、基層培養(yǎng)項目和選調生報名人數約40.2萬人,40.2萬人用科學記數法表示為_____人.三、解答題(共8題,共72分)17.(8分)在某小學“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現,分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結論.(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結論;(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結論的概率是多少?(3)比賽規(guī)定,三位評委中至少有兩位給出“通過”的結論,則小選手可入圍進入復賽,問琪琪進入復賽的概率是多少?18.(8分)我市正在開展“食品安全城市”創(chuàng)建活動,為了解學生對食品安全知識的了解情況,學校隨機抽取了部分學生進行問卷調查,將調查結果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進行統計,并繪制了下列兩幅統計圖(不完整).請根據圖中信息,解答下列問題:此次共調查了名學生;扇形統計圖中D所在扇形的圓心角為;將上面的條形統計圖補充完整;若該校共有800名學生,請你估計對食品安全知識“非常了解”的學生的人數.19.(8分)為響應國家的“一帶一路”經濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質檢部門對A、B、C、D四個廠家生產的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據檢測數據繪制了如圖1、圖2兩幅不完整的統計圖.抽查D廠家的零件為件,扇形統計圖中D廠家對應的圓心角為;抽查C廠家的合格零件為件,并將圖1補充完整;通過計算說明合格率排在前兩名的是哪兩個廠家;若要從A、B、C、D四個廠家中,隨機抽取兩個廠家參加德國工業(yè)產品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.20.(8分)已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線的解析式;(2)當點P運動到什么位置時,△PAB的面積有最大值?(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.21.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點D,過點D作∠ABD=∠ADE,交AC于點E.(1)求證:DE為⊙O的切線.(2)若⊙O的半徑為,AD=,求CE的長.22.(10分)小昆和小明玩摸牌游戲,游戲規(guī)則如下:有3張背面完全相同,牌面標有數字1、2、3的紙牌,將紙牌洗勻后背面朝上放在桌面上,隨機抽出一張,記下牌面數字,放回后洗勻再隨機抽出一張.請用畫樹形圖或列表的方法(只選其中一種),表示出兩次抽出的紙牌數字可能出現的所有結果;若規(guī)定:兩次抽出的紙牌數字之和為奇數,則小昆獲勝,兩次抽出的紙牌數字之和為偶數,則小明獲勝,這個游戲公平嗎?為什么?23.(12分)如圖,已知拋物線與軸交于兩點(A點在B點的左邊),與軸交于點.(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、、Q為頂點的四邊形是平行四邊形,求點的坐標;(3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若﹕=1﹕1.求的值.24.國家發(fā)改委公布的《商品房銷售明碼標價規(guī)定》,從2011年5月1日起商品房銷售實行一套一標價.商品房銷售價格明碼標價后,可以自行降價、打折銷售,但漲價必須重新申報.某市某樓盤準備以每平方米5000元的均價對外銷售,由于新政策的出臺,購房都持幣觀望.為了加快資金周轉,房地產開發(fā)商對價格經過兩次下調后,決定以每平方米4050元的均價開盤銷售.求平均每次下調的百分率;某人準備以開盤均價購買一套100平方米的房子,開發(fā)商還給予以下兩種優(yōu)惠方案發(fā)供選擇:①打9.8折銷售;②不打折,送兩年物業(yè)管理費,物業(yè)管理費是每平方米每月1.5元,請問哪種方案更優(yōu)惠?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

解:可把A、B、C、D選項折疊,能夠復原(1)圖的只有A.故選A.2、B【解析】

利用多邊形的內角和公式求出n即可.【詳解】由題意得:(n-2)×180°=360°,解得n=4;故答案為:B.【點睛】本題考查多邊形的內角和,解題關鍵在于熟練掌握公式.3、C【解析】

已知對角線的長度,根據菱形的面積計算公式即可計算菱形的面積.【詳解】根據對角線的長可以求得菱形的面積,根據S=ab=×6cm×8cm=14cm1.故選:C.【點睛】考查菱形的面積公式,熟練掌握菱形面積的兩種計算方法是解題的關鍵.4、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將27100用科學記數法表示為:.2.71×104.故選:C.【點睛】本題考查科學記數法—表示較大的數。5、C【解析】

分別求出每一個不等式的解集,根據口訣:大小小大中間找確定不等式組的解集,在數軸上表示時由包括該數用實心點、不包括該數用空心點判斷即可.【詳解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式組的解集為:2<x≤4,故選:C.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.6、D【解析】

根據絕對值的性質解答.【詳解】解:當a≤0時,|a|=-a,∴|a|=-a時,a為負數或零,故選D.【點睛】本題考查的是絕對值的性質,①當a是正有理數時,a的絕對值是它本身a;②當a是負有理數時,a的絕對值是它的相反數-a;③當a是零時,a的絕對值是零.7、A【解析】

根據銳角三角函數的定義得出sinB等于∠B的對邊除以斜邊,即可得出答案.【詳解】根據在△ABC中,∠C=90°,那么sinB==,故答案選A.【點睛】本題考查的知識點是銳角三角函數的定義,解題的關鍵是熟練的掌握銳角三角函數的定義.8、D【解析】作BE⊥OA于點E.則AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,,∴正方形的面積是:,故選D.9、A【解析】

此題為數學知識的應用,由題意設一個??奎c,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為??奎c,則所有人的路程的和=15×100+10×300=1(米),②以點B為??奎c,則所有人的路程的和=30×100+10×200=5000(米),③以點C為??奎c,則所有人的路程的和=30×300+15×200=12000(米),④當在AB之間??繒r,設停靠點到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當在BC之間??繒r,設??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該??奎c的位置應設在點A;故選A.【點睛】此題為數學知識的應用,考查知識點為兩點之間線段最短.10、A【解析】

∵AB的中垂線交BC于D,AC的中垂線交BC于E,∴DA=DB,EA=EC,則△ADE的周長=AD+DE+AE=BD+DE+EC=BC=8,故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、21【解析】每次約有111名乘客,如飛機一旦失事,每位乘客賠償41萬人民幣,共計4111萬元,由題意可得一次飛行中飛機失事的概率為P=1.11115,所以賠償的錢數為41111111×1.11115=2111元,即可得至少應該收取保險費每人=21元.12、110°或50°.【解析】

由內角和定理得出∠C=60°,根據翻折變換的性質知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°兩種情況,先求出∠DFC度數,繼而由∠BDF=∠DFC﹣∠B可得答案.【詳解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性質知∠DFE=∠A=70°,分兩種情況討論:①當∠EFC=90°時,∠DFC=∠DFE+∠EFC=160°,則∠BDF=∠DFC﹣∠B=110°;②當∠FEC=90°時,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;綜上:∠BDF的度數為110°或50°.故答案為110°或50°.【點睛】本題考查的是圖形翻折變換的性質及三角形內角和定理,熟知折疊的性質、三角形的內角和定理、三角形外角性質是解答此題的關鍵.13、【解析】

直接利用已知點坐標得出原點位置,進而得出答案.【詳解】解:如圖所示:雁棲湖的點的坐標為:(1,-3).故答案為(1,-3).【點睛】本題考查坐標確定位置,正確得出原點的位置是解題關鍵.14、【解析】試題分析:∵四邊形ABCD與四邊形EFGH位似,位似中心點是點O,∴==,則===.故答案為.點睛:本題考查的是位似變換的性質,掌握位似圖形與相似圖形的關系、相似多邊形的性質是解題的關鍵.15、40°【解析】

直接利用三角形內角和定理得出∠6+∠7的度數,進而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,

∵∠1+∠2+∠3+∠4=220°,

∴∠1+∠2+∠6+∠3+∠4+∠7=360°,

∴∠6+∠7=140°,

∴∠5=180°-(∠6+∠7)=40°.

故答案為40°.【點睛】主要考查了三角形內角和定理,正確應用三角形內角和定理是解題關鍵.16、4.02×1.【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:40.2萬=4.02×1,故答案為:4.02×1.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、(1)見解析;(2);(3).【解析】

(1)根據列樹狀圖的步驟和題意分析所有等可能的出現結果,即可畫出圖形;(2)根據(1)求出甲、乙兩位評委給出相同結論的情況數,再根據概率公式即可求出答案;(3)根據(1)即可求出琪琪進入復賽的概率.【詳解】(1)畫樹狀圖如下:(2)∵共有8種等可能結果,只有甲、乙兩位評委給出相同結論的有2種可能,∴只有甲、乙兩位評委給出相同結論的概率P=;(3)∵共有8種等可能結果,三位評委中至少有兩位給出“通過”結論的有4種可能,∴樂樂進入復賽的概率P=.【點睛】此題考查了列樹狀圖,掌握列樹狀圖的步驟,找出三位評委給出相同結論的情況數是本題的關鍵,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P=.18、(1)120;(2)54°;(3)詳見解析(4)1.【解析】

(1)根據B的人數除以占的百分比即可得到總人數;(2)先根據題意列出算式,再求出即可;(3)先求出對應的人數,再畫出即可;(4)先列出算式,再求出即可.【詳解】(1)(25+23)÷40%=120(名),即此次共調查了120名學生,故答案為120;(2)360°×=54°,即扇形統計圖中D所在扇形的圓心角為54°,故答案為54°;(3)如圖所示:;(4)800×=1(人),答:估計對食品安全知識“非常了解”的學生的人數是1人.【點睛】本題考查了條形統計圖、扇形統計圖,總體、個體、樣本、樣本容量,用樣本估計總體等知識點,兩圖結合是解題的關鍵.19、(1)500,90°;(2)380;(3)合格率排在前兩名的是C、D兩個廠家;(4)P(選中C、D)=.【解析】試題分析:(1)計算出D廠的零件比例,則D廠的零件數=總數×所占比例,D廠家對應的圓心角為360°×所占比例;(2)C廠的零件數=總數×所占比例;(3)計算出各廠的合格率后,進一步比較得出答案即可;(4)利用樹狀圖法列舉出所有可能的結果,然后利用概率公式即可求解.試題解析:(1)D廠的零件比例=1-20%-20%-35%=25%,D廠的零件數=2000×25%=500件;D廠家對應的圓心角為360°×25%=90°;(2)C廠的零件數=2000×20%=400件,C廠的合格零件數=400×95%=380件,如圖:(3)A廠家合格率=630÷(2000×35%)=90%,B廠家合格率=370÷(2000×20%)=92.5%,C廠家合格率=95%,D廠家合格率470÷500=94%,合格率排在前兩名的是C、D兩個廠家;(4)根據題意畫樹形圖如下:共有12種情況,選中C、D的有2種,則P(選中C、D)==.考點:1.條形統計圖;2.扇形統計圖;3.樹狀圖法.20、(1)拋物線解析式為y=﹣x2+2x+6;(2)當t=3時,△PAB的面積有最大值;(3)點P(4,6).【解析】

(1)利用待定系數法進行求解即可得;(2)作PM⊥OB與點M,交AB于點N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關于t的函數表達式,利用二次函數的性質求解可得;(3)由PH⊥OB知DH∥AO,據此由OA=OB=6得∠BDH=∠BAO=45°,結合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點E與點A重合,求出y=6時x的值即可得出答案.【詳解】(1)∵拋物線過點B(6,0)、C(﹣2,0),∴設拋物線解析式為y=a(x﹣6)(x+2),將點A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點P作PM⊥OB與點M,交AB于點N,作AG⊥PM于點G,設直線AB解析式為y=kx+b,將點A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當t=3時,△PAB的面積有最大值;(3)△PDE為等腰直角三角形,

則PE=PD,

點P(m,-m2+2m+6),

函數的對稱軸為:x=2,則點E的橫坐標為:4-m,

則PE=|2m-4|,

即-m2+2m+6+m-6=|2m-4|,

解得:m=4或-2或5+或5-(舍去-2和5+)

故點P的坐標為:(4,6)或(5-,3-5).【點睛】本題考查了二次函數的綜合問題,涉及到待定系數法、二次函數的最值、等腰直角三角形的判定與性質等,熟練掌握和靈活運用待定系數法求函數解析式、二次函數的性質、等腰直角三角形的判定與性質等是解題的關鍵.21、(1)證明見解析;(2)CE=1.【解析】

(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根據切線的判定推出即可;(2)求出CD,AC的長,證△CDE∽△CAD,得出比例式,求出結果即可.【詳解】(1)連接OD,∵AB是直徑,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD,∴∠BDO=∠ABD,∵∠ABD=∠ADE,∴∠ADO+∠ADE=90°,即,OD⊥DE,∵OD為半徑,∴DE為⊙O的切線;(2)∵⊙O的半徑為,∴AB=2OA==AC,∵∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,∴∠EDC=∠ADO,∵OA=OD,∴∠ADO=∠OAD,∵AB=AC,AD⊥BC,∴∠OAD=∠CAD,∴∠EDC=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴=,∴=,解得:CE=1.【點睛】本題考查了等腰三角形的性質與切線的判定,解題的關鍵是熟練的掌握等腰三角形的性質與切線的判定.22、(1)結果見解析;(2)不公平,理由見解析.【解析】判斷游戲是否公平,即是看雙方取勝的概率是否相同,若相同,則公平,不相同則不公平.23、(1);(2)和;(3)【解析】

(1)設,,再根據根與系數的關系得到,根據勾股定理得到:、,根據列出方程,解方程即可;(2)求出A、B坐標,設出點Q坐標,利用平行四邊形的性質,分類討論點P坐標,利用全等的性質得出P點的橫坐標后,分別代入拋物線解析式,求出P點坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論