桂林中學(xué)2024年高二上數(shù)學(xué)期末檢測模擬試題含解析_第1頁
桂林中學(xué)2024年高二上數(shù)學(xué)期末檢測模擬試題含解析_第2頁
桂林中學(xué)2024年高二上數(shù)學(xué)期末檢測模擬試題含解析_第3頁
桂林中學(xué)2024年高二上數(shù)學(xué)期末檢測模擬試題含解析_第4頁
桂林中學(xué)2024年高二上數(shù)學(xué)期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

桂林中學(xué)2024年高二上數(shù)學(xué)期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記為等差數(shù)列的前n項和,有下列四個等式,甲:;乙:;丙:;?。海绻挥幸粋€等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁2.已知是函數(shù)的導(dǎo)函數(shù),則()A. B.C. D.3.已知等差數(shù)列且,則數(shù)列的前13項之和為()A.26 B.39C.104 D.524.曲線與曲線的A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等5.設(shè)命題,則為A. B.C. D.6.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.7.在空間直角坐標系中,若,,則()A. B.C. D.8.已知定義在R上的函數(shù)滿足,且當時,,則下列結(jié)論中正確的是()A. B.C. D.9.已知拋物線的焦點與橢圓的一個焦點重合,過坐標原點作兩條互相垂直的射線,,與分別交于,則直線過定點()A. B.C. D.10.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.11.已知F是拋物線的焦點,直線l是拋物線的準線,則F到直線l的距離為()A.2 B.4C.6 D.812.已知,則下列不等式一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)處取極值,則___________14.4與16的等比中項是________.15.已知雙曲線的左,右焦點分別為,P是該雙曲線右支上一點,且(O為坐標原點),,則雙曲線C的離心率為__________16.已知數(shù)列{}的通項公式為,前n項和為,當取得最小值時,n的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點到兩個定點的距離比為(1)求點的軌跡方程;(2)若過點的直線被點的軌跡截得的弦長為,求直線的方程18.(12分)如圖,已知四棱臺的上、下底面分別是邊長為2和4的正方形,,且底面,點分別在棱、上·(1)若P是的中點,證明:;(2)若平面,二面角的余弦值為,求四面體的體積19.(12分)如圖,在棱長為的正方體中,為中點(1)求二面角的大??;(2)探究線段上是否存在點,使得平面?若存在,確定點的位置;若不存在,說明理由20.(12分)已知拋物線的焦點,點在拋物線上.(1)求;(2)過點向軸作垂線,垂足為,過點的直線與拋物線交于兩點,證明:為直角三角形(為坐標原點).21.(12分)已知三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且(1)求角B;(2)若,角B的角平分線交AC于點D,,求CD的長22.(10分)設(shè)AB是過拋物線焦點F的弦,若,,求證:(1);(2)(為弦AB的傾斜角)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】分別假設(shè)甲、乙、丙、丁不成立,驗證得到答案【題目詳解】設(shè)數(shù)列的公差為,若甲不成立,則,由①,③可得,此時與②矛盾;A錯,若乙不成立,則,由①,③可得,此時;與②矛盾;B錯,若丙不成立,則,由①,③可得,此時;與②矛盾;C錯,若丁不成立,則,由①,③可得,此時;,D對,故選:D.2、B【解題分析】求出,代值計算可得的值.【題目詳解】因為,則,因此,.故選:B.3、A【解題分析】根據(jù)等差數(shù)列的性質(zhì)化簡已知條件可得的值,再由等差數(shù)列前項和及等差數(shù)列的性質(zhì)即可求解.【題目詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項之和為,故選:A4、D【解題分析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷【題目詳解】解:曲線表示焦點在軸上,長軸長10,短軸長為6,離心率為,焦距為8曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為8對照選項,則正確故選:【題目點撥】本題考查橢圓的方程和性質(zhì),考查運算能力,屬于基礎(chǔ)題5、C【解題分析】特稱命題的否定為全稱命題,所以命題的否命題應(yīng)該為,即本題的正確選項為C.6、C【解題分析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【題目詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C7、B【解題分析】直接利用空間向量的坐標運算求解.【題目詳解】解:因為,,所以.故選:B8、B【解題分析】由可得,利用導(dǎo)數(shù)判斷函數(shù)在上的單調(diào)性,由此比較函數(shù)值的大小確定正確選項.【題目詳解】∵∴,當時,,∴,故∴在內(nèi)單調(diào)遞增,又,∴,所以故選:B9、A【解題分析】由橢圓方程可求得坐標,由此求得拋物線方程;設(shè),與拋物線方程聯(lián)立可得韋達定理的形式,根據(jù)可得,由此構(gòu)造方程求得,根據(jù)直線過定點的求法可求得定點.【題目詳解】由橢圓方程知其焦點坐標為,又拋物線焦點,,解得:,則拋物線的方程為,由題意知:直線斜率不為,可設(shè),由得:,則,即,設(shè),,則,,,,,解得:或;又與坐標原點不重合,,,當時,,直線恒過定點.故選:A.【題目點撥】思路點睛:本題考查直線與拋物線綜合應(yīng)用中的直線過定點問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與拋物線方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達定理的形式;③利用韋達定理表示出已知中的等量關(guān)系,代入韋達定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點的求解方法可求得結(jié)果.10、B【解題分析】直接利用空間向量基本定理求解即可【題目詳解】因為在平行六面體中,,,,所以,故選:B11、B【解題分析】根據(jù)拋物線定義即可求解【題目詳解】由得,所以F到直線l的距離為故選:B12、B【解題分析】運用不等式的性質(zhì)及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解題分析】=.因為f(x)在1處取極值,所以1是f′(x)=0的根,將x=1代入得a=3.故答案為3.考點:利用導(dǎo)數(shù)研究函數(shù)的極值14、±8【解題分析】解析由G2=4×16=64得G=±8.答案±815、【解題分析】由已知及向量數(shù)量積的幾何意義易知,根據(jù)雙曲線的性質(zhì)可得,再由雙曲線的定義及勾股定理構(gòu)造關(guān)于雙曲線參數(shù)的齊次方程求離心率.【題目詳解】∵,∴△為等腰三角形且,又,∴,∴.又,,∴,則,可得,∴雙曲線C的離心率為故答案為:.16、7【解題分析】首先求出數(shù)列的正負項,再判斷取得最小值時n的值.【題目詳解】當,,解得:,當和時,,所以取得最小值時,.故答案為:7三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解題分析】(1)設(shè)出,表達出,直接法求出軌跡方程;(2)在第一問的基礎(chǔ)上,先考慮直線斜率不存在時是否符合要求,再考慮斜率存在時,設(shè)出直線方程,表達出圓心到直線的距離,利用垂徑定理列出方程,求出直線方程.【小問1詳解】設(shè),則,,故,兩邊平方得:【小問2詳解】當直線斜率不存在時,直線為,此時弦長為,滿足題意;當直線斜率存在時,設(shè)直線,則圓心到直線距離為,由垂徑定理得:,解得:,此時直線的方程為,綜上:直線的方程為或.18、(1)證明見解析(2)【解題分析】(1)建立空間直角坐標系,利用空間向量的坐標運算知,即可證得結(jié)論;(2)利用空間向量結(jié)合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問1詳解】以為坐標原點,,,所在直線分別為,,軸建立空間直角坐標系,則,,,,設(shè),其中,,若是的中點,則,,,于是,∴,即【小問2詳解】由題設(shè)知,,,是平面內(nèi)的兩個不共線向量設(shè)是平面的一個法向量,則,取,得又平面的一個法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時設(shè),而,由此得點,,∵平面,且平面的一個法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【題目點撥】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.19、(1)(2)點為線段上靠近點的三等分點【解題分析】(1)建立空間直角坐標系,分別寫出點的坐標,求出兩個平面的法向量代入公式求解即可;(2)假設(shè)存在,設(shè),利用相等向量求出坐標,利用線面平行的向量法代入公式計算即可.【小問1詳解】如下圖所示,以為原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系,則,,,,,,.所以,設(shè)平面的法向量,所以,即,令,則,,所以,連接,因為,,,平面,平面,平面,所以平面,所以為平面的一個法向量,所以,由圖知,二面角為銳二面角,所以二面角的大小為【小問2詳解】假設(shè)在線段上存在點,使得平面,設(shè),,,因為平面,所以,即所以,即解得所以在線段上存在點,使得平面,此時點為線段上靠近點的三等分點20、(1)(2)證明見解析【解題分析】(1)點代入即可得出拋物線方程,根據(jù)拋物線的定義即可求得.(2)由題,設(shè)直線的方程為:,與拋物線方程聯(lián)立,可得,利用韋達定理證得即可得出結(jié)論.【小問1詳解】點在拋物線上.,則,所以.【小問2詳解】證明:由題,設(shè)直線的方程為:,點聯(lián)立方程,消得:,由韋達定理有,由,所以,所以,所以,所以為直角三角形.21、(1)(2)【解題分析】(1)根據(jù)正弦定理邊角互化得,進而得;(2)根據(jù)題意得,進而在中,由余弦定理即可得答案.【小問1詳解】解:因為,所以由正弦定理可得,所以,即,因為,所以,故,因為,所以【小問2詳解】解:由(1)可知,又;所以,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論