75kw4極變頻調(diào)速同步電動(dòng)機(jī)電磁方案及控制系統(tǒng)含外文翻譯_第1頁(yè)
75kw4極變頻調(diào)速同步電動(dòng)機(jī)電磁方案及控制系統(tǒng)含外文翻譯_第2頁(yè)
75kw4極變頻調(diào)速同步電動(dòng)機(jī)電磁方案及控制系統(tǒng)含外文翻譯_第3頁(yè)
75kw4極變頻調(diào)速同步電動(dòng)機(jī)電磁方案及控制系統(tǒng)含外文翻譯_第4頁(yè)
75kw4極變頻調(diào)速同步電動(dòng)機(jī)電磁方案及控制系統(tǒng)含外文翻譯_第5頁(yè)
已閱讀5頁(yè),還剩58頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

75kw-4極變頻調(diào)速同步電動(dòng)機(jī)電磁方案及控制系統(tǒng)的設(shè)計(jì)75kw-4極變頻調(diào)速同步電動(dòng)機(jī)電磁方案及控制系統(tǒng)的設(shè)計(jì)目錄摘要 IAbstract II第一章同步電機(jī)概論 11.1同步電機(jī)的基本特點(diǎn) 11.2同步電機(jī)的基本類型 11.3同步電機(jī)的基本結(jié)構(gòu) 21.4同步電機(jī)主要用途 41.5基本技術(shù)要求 4第二章同步電動(dòng)機(jī)的工作特性 72.1同步電動(dòng)機(jī)的工作原理 72.2凸極同步電動(dòng)機(jī)工作特性及分析 82.3同步電動(dòng)機(jī)的功率平衡關(guān)系 10第三章電機(jī)設(shè)計(jì)基本方法 113.1總體設(shè)計(jì)過(guò)程 113.2電磁設(shè)計(jì) 11第四章電磁設(shè)計(jì)方案計(jì)算 144.1設(shè)計(jì)要求 144.2方案計(jì)算 14第五章電磁設(shè)計(jì)結(jié)果分析 405.1復(fù)算程序 405.2方案結(jié)果比較與分析 405.3心得與總結(jié) 42第六章同步電動(dòng)機(jī)變頻調(diào)速系統(tǒng)設(shè)計(jì) 436.1同步調(diào)速系統(tǒng)類型 436.2變頻調(diào)速系統(tǒng)的基本控制類型 436.3同步電動(dòng)機(jī)矢量控制系統(tǒng) 44第七章AutoCAD2004繪圖 497.1AutoCAD簡(jiǎn)介 497.2畫(huà)定子沖片圖 497.3畫(huà)轉(zhuǎn)子沖片圖 507.4畫(huà)繞組圖 51參考文獻(xiàn) 54總結(jié) 55致謝 561.1同步電機(jī)的基本特點(diǎn)1.2同步電機(jī)的基本類型1.3同步電機(jī)的基本結(jié)構(gòu)1.4同步電機(jī)主要用途1.5基本技術(shù)要求2.1同步電動(dòng)機(jī)的工作原理2.2凸極同步電動(dòng)機(jī)工作特性及分析b)2.3同步電動(dòng)機(jī)的功率平衡關(guān)系3.1總體設(shè)計(jì)過(guò)程3.2電磁設(shè)計(jì)4.1設(shè)計(jì)要求4.2方案計(jì)算方案一方案二方案三一、額定數(shù)據(jù)和技術(shù)要求1.額定功率7575752.相數(shù)3333.額定線電壓4004004004.額定相電壓230.94230.94230.945.額定頻率5050506.極數(shù)4447.額定效率0.9150.9150.9158.額定功率因數(shù)0.9500.9500.9509.額定相電流125.22125.22125.2210.額定轉(zhuǎn)速15001500150011.額定轉(zhuǎn)矩477.45477.45477.4512.機(jī)座中心高(cm)25252513.定子槽滿率80~85%80.1%14.定子繞組電密7~9.5A/mm28.2115.氣隙磁密0.73~0.88T0.85二、定子沖片設(shè)計(jì)16.定子外徑43434317.定子內(nèi)徑30303018.定子槽數(shù)48484819.電樞拼片條件(1)每圈扇形片數(shù)666(2)重疊數(shù)222(3)每片槽數(shù)888(4)扇形片高8.518.518.51(5)扇形片寬21.521.521.5(6)無(wú)軸流拼片條件66620.每極每相槽數(shù)44421.極距23.5523.5523.5522.定子槽形(1)0.320.320.32(2)(3)(4)5(5)5(6)R0.510.510.5123.每槽有效面積為絕緣層厚度,E級(jí)取=0.027cm,為槽楔厚,取為0.2cm,=2r1.381.381.38(1)直徑位置303030槽節(jié)距1.9631.9631.963槽寬0.320.320.32齒寬1.6431.6431.643(2)直徑位置30.530.530.5槽節(jié)距1.9951.9951.995槽寬齒寬1.0951.0951.095(3)直徑位置333333槽節(jié)距2.1592.1592.159槽寬1.021.021.02齒寬1.1391.1391.13925.定子齒距1.9631.9631.96325.平均齒寬=1/3×[bz2,bz3中之大者+2(bz2,bz3之最小者)]1.1101.1101.11027.電樞卡氏系數(shù)其中:槽節(jié)距1.0731.0731.073三、轉(zhuǎn)子沖片設(shè)計(jì)28.氣隙長(zhǎng)度=229.最大氣隙0.1450.1450.14530.轉(zhuǎn)子外徑29.7629.7629.7631.磁軛外徑17171732.轉(zhuǎn)子(磁軛)內(nèi)徑88833.磁極寬度999磁極尺寸計(jì)算(1)(2)2.5692.5692.569(3)3.8113.8113.811(4)1.7791.7791.779(5)16.01816.01816.018(6)31.97331.97331.973(7)(8)33.06233.06233.062(9)6.0846.0846.084(10)23.37823.37823.378(11)8.3518.3518.35135.磁極壓板厚36.磁極壓板寬37.氣隙極距比值0.0050.0050.00538.氣隙比值1.2081.2081.20839.極抱百分值0.7250.7250.72540.磁極抱角32.62532.62532.62541.等效極弧系數(shù)(查曲線1及2)[用公式計(jì)算見(jiàn)附錄一]0.6440.6440.64442.波形系數(shù)(查曲線1及2)[或用基波幅值系數(shù),用公式計(jì)算見(jiàn)附錄一]1.1281.1281.12843.磁極偏心距偏心半徑:=14.6340.2460.2460.246四、電樞繞組和鐵心長(zhǎng)度計(jì)算44.繞組并聯(lián)支路數(shù)22245.估算每槽導(dǎo)體所占面積1.1041.1041.10446.選擇每槽導(dǎo)體數(shù)注意:選偶數(shù)10111047.電樞繞組節(jié)距單層匝數(shù)=101110雙層匝數(shù)=55548.每相串聯(lián)導(dǎo)體數(shù)(q=2,3,4或5)80848049.線負(fù)荷319.032334.983319.03250.估算每根導(dǎo)體的截面積0.0870.0790.08751.每根導(dǎo)線并繞根數(shù)n33352.電樞線規(guī)裸徑/絕緣徑/0.9380.9520.938截面積0.02540.02540.025453.電樞繞組電密821.654821.654821.65454.每槽導(dǎo)線所占面積1.1061.1791.10655.槽滿率0.8010.850.80156.繞組系數(shù)Kdp0.9250.9280.92557.定子斜槽因數(shù)(一般,可不計(jì)算)11185008500880058.每極磁通27666612625935276666159.電機(jī)鐵芯長(zhǎng)度21.46220.3720.7360.電樞鐵心長(zhǎng)21.46220.3720.7361.磁極鐵心長(zhǎng)22.46221.3721.7362.磁極鐵心凈長(zhǎng)21.33820.30120.64363.鐵心有效長(zhǎng)21.46220.3720.7364.鐵心純長(zhǎng)20.38819.35119.69365.電樞繞組尺寸(1)(y以槽數(shù)計(jì))22.84722.84722.84718.69318.69318.69314.53914.53914.539(2)14.45114.45114.45111.82311.82311.8239.1969.1969.196(3)5.5795.5795.5794.5654.5654.5653.5513.5513.551(4)26.22826.22826.22821.45921.45921.45916.69116.69116.691(5)bc取1.5cm24.46223.3723.7366.每相電樞繞組長(zhǎng)3769.0553880.1173710.52467.電樞繞組每相電阻(歐)(1)在75℃時(shí)(歐)0.0540.0550.053(2)在20℃時(shí)(歐)0.0440.0460.04468.電樞繞組銅重(千克)15.33715.78915.09869.電樞繞組銅毛重(千克)16.10316.57815.853五、磁路計(jì)算70.氣隙磁密85008500880071.氣隙安匝875.481875.481906.3872.電樞齒磁密15800-1660015823.06815823.06816381.5373.電樞齒磁場(chǎng)強(qiáng)度,根據(jù)查表674.電樞齒計(jì)算高度1.571.571.5775.電樞齒安匝數(shù)51.96751.96777.49576.電樞軛高度4.494.494.4977.電樞軛計(jì)算高度4.664.664.6678.電樞軛磁密1456014560150741.0871.0871.08779.電樞軛磁路長(zhǎng)(拼片定子)16.87816.87816.87880.電樞軛磁通分布系數(shù)根據(jù)查表40.3530.3530.32981.電樞軛磁場(chǎng)強(qiáng)度根據(jù)查表1161620.8782.電樞軛安匝數(shù)95.32495.324115.88583.電樞齒軛及氣隙安匝和1022.7721022.7721099.76084.極掌漏磁常數(shù)45.95644.32844.86585.極身漏磁常數(shù)為壓板厚47.64845.91446.48686.磁極漏磁常數(shù)102.96599.267100.48687.每極漏磁通105309.329101527.33110510.7888.磁極磁通28719702727463287717289.漏磁系數(shù)P246時(shí)1.041.041.041.0490.磁極極身截面=0.95(1m/m鋼片)198.606189.272 192.35091.磁極極身磁密14000~1560014460.65014410.24914957.97592.磁極極身磁場(chǎng)強(qiáng)度,根據(jù)查表217.28517.0520.0693.磁極極身安匝88.15486.956102.30794.磁軛高度95.轉(zhuǎn)子磁軛路長(zhǎng)4.9064.9064.90696.轉(zhuǎn)子磁軛長(zhǎng)度22.46221.3721.7397.轉(zhuǎn)子磁軛磁密14206.87414181.24514711.81498.轉(zhuǎn)子磁軛磁場(chǎng)強(qiáng)度,根據(jù)查表322.322.1626.2999.轉(zhuǎn)子磁軛安匝數(shù)109.409108.723128.985100.殘隙長(zhǎng)度0.00870.00870.0087101.殘隙處截面202.154192.329195.569102.殘隙磁密14206.87414181.24514711.814103.殘隙安匝數(shù)99.43498.841102.681104.每極空載的磁安匝數(shù)1319.7691317.2911433.733六、參數(shù)計(jì)算105.電樞槽單位漏比磁導(dǎo)從曲線3查出[的計(jì)算公式見(jiàn)附錄二]1.1581.1581.158106.槽面積1.6081.6081.608107.1.0931.0931.093108.0.8070.8070.807109.互感漏磁導(dǎo)0.7610.7610.761110..電樞槽漏磁比磁導(dǎo)1.2581.3621.258111..電樞繞組等效節(jié)距0.8330.8410.833112.電樞繞組端接漏磁比磁導(dǎo)1.8862.0211.953113.曲折比漏磁導(dǎo)1.1051.1121.105114.相帶漏磁比磁導(dǎo)(1)q=整數(shù)(,無(wú)阻尼籠)根據(jù)y從曲線5查出,或用公式計(jì)算見(jiàn)附錄三(2)q=分?jǐn)?shù)0.04960.04990.0496115.每相電阻標(biāo)幺值0.0290.0300.029116.每相定子漏抗0.1460.1610.143117.每相漏磁電抗標(biāo)么值0.0790.0870.078118.空載額定電壓時(shí)的氣隙與殘隙磁勢(shì)和974.914974.322 1009.061119.每相電樞反應(yīng)磁勢(shì)3127.3873294.9853127.387120.直軸電構(gòu)反應(yīng)常數(shù)查曲線40.820.820.82121.橫軸電樞反應(yīng)常數(shù)查曲線40.470.470.47122.直軸電樞反應(yīng)磁勢(shì)2564.4572701.8882564.457123.橫軸電樞反應(yīng)磁勢(shì)1469.8721548.6431469.872124.直軸電樞反應(yīng)電抗標(biāo)么值2.6302.7732.541 125.橫軸電樞反應(yīng)電抗標(biāo)么值1.5081.5891.457126.直軸同步電抗標(biāo)么值2.7092.8612.619127.橫軸同步電抗標(biāo)么值1.5871.6771.534七、短路比128.電樞電抗壓降磁勢(shì)77.05485.18978.227129.短路磁勢(shì)2641.5112787.0772642.684130.飽和短路比0.50.4730.543131.不飽和短路比0.3690.350.382132.額定電壓時(shí)感應(yīng)電勢(shì)標(biāo)么值1.0521.0561.0510.0660.0740.0651.0541.0581.053133.對(duì)應(yīng)于的空載磁勢(shì)將及各部磁密,均乘以C倍,并計(jì)算,求得各部分的H及F,得對(duì)應(yīng)于的空載磁勢(shì)(1)2917142.52779106.82914431.2(2)8962.3248995.8079270.017923.099926.548954.791(3)16683.70216746.03117256.485根據(jù)查表159.862.283.193.88697.654130.467(4)15351.75115409.10315878.805根據(jù)查表124.425.1734.6411.811424.807583.962(5)1428.7961449.0081669.219(6)147115.47143838.49167733.63(7)30642582922945.33082164.8(8)15428.83815443.05916023.703根據(jù)查表229.329.4840.5149.431150.349206.551(9)15158.07115197.64215760根據(jù)查表330.53137.78149.641152.094185.358(10)15158.07115197.64215760.004106.091105.925109.9962017.3542043.1142388.238134.滿載勵(lì)磁磁勢(shì)-2690.89-2844.91-2712.362959.0113031.1173348.4393999.5834157.0634309.172八、勵(lì)磁繞組135.勵(lì)磁繞組線規(guī)(1)圓線(2)扁線(安)51020線規(guī)1.300.02540.02540.0254136.勵(lì)磁繞組電密初值p246450~500;500~600(隱極)470498472137.滿載勵(lì)磁電流初值11.93812.64911.989138.勵(lì)磁繞組每極匝數(shù)取接近的整數(shù)336330360139.滿載勵(lì)磁電流11.90412.59711.970140.勵(lì)磁繞組電密468.643495.951471.257141.空載時(shí)的勵(lì)磁電流3.1423.1933.186142.空載額定電壓時(shí)的勵(lì)磁電流3.9283.9923.983143.短路額定電流時(shí)的勵(lì)磁電流7.8628.4467.341144.勵(lì)磁繞組排列先按比例作圖,確定層數(shù)及各層匝數(shù)(1)繞組高度圓線:=沿高度方向?qū)w數(shù)扁線:=沒(méi)度度方向?qū)w數(shù)4.2344.3664.032(2)繞組厚度圓線:=沿高度方向?qū)w數(shù)扁線:=沒(méi)度度方向?qū)w數(shù)3.0722.8353.456(3)幾何中心距(其中,)1.5361.4181.728145.勵(lì)磁繞組平均匝長(zhǎng)74.36771.44074.110=0.223.06221.97022.330=0.250.350.350.35146.勵(lì)磁繞組電阻(1)時(shí)8.5398.0569.117(2)時(shí)7.0366.6387.513(3)時(shí)9.7779.22510.439147.勵(lì)磁繞組銅凈重(千克)22.59521.31824.125148.勵(lì)磁繞組銅毛重(千克)23.83122.38325.331149.額定勵(lì)磁電壓122.831122.643131.835九、短路電流,過(guò)載能力及暫態(tài)電抗150.空載時(shí)穩(wěn)定短路電流倍數(shù)0.3690.3500.382151.額定負(fù)載時(shí)穩(wěn)定短路電流倍數(shù)1.5141.4921.631152.額定負(fù)載時(shí)勵(lì)磁磁勢(shì)與氣隙,殘陽(yáng)磁勢(shì)和的比值4.1024.2674.270153.0.4340.4650.166154.考慮磁路飲和時(shí)過(guò)載能力修正系數(shù)KK對(duì)應(yīng)于 查曲線61.081.081.02155.過(guò)載能力標(biāo)么值1.7211.6961.751156.勵(lì)磁繞組漏磁導(dǎo)0.6550.6630.661157.勵(lì)磁繞組漏抗標(biāo)么值0.1910.2020.185158.勵(lì)磁繞組總電抗標(biāo)么值2.8212.9752.727159.瞬變直軸電抗標(biāo)幺值0.2570.2760.250160.瞬變橫軸電抗標(biāo)幺值1.5871.6771.534十、額定負(fù)載時(shí)的損耗及效率161.沖擊短路電流倍數(shù)標(biāo)幺值7.3566.8487.559162.額定負(fù)載時(shí)的電樞磁密16683.70216746.03117256.485163.電樞齒單位鐵耗(瓦/千克)對(duì)硅鋼片(瓦/千克)5.8455.8896.254164.電樞齒鐵重千克12.70612.06012.273165.電樞齒部鐵耗(瓦)當(dāng)<100千伏安取當(dāng)千伏安取148.545142.045153.502166.額定負(fù)載時(shí)電樞軛部磁密15351.75115409.10315878.805167.電樞軛部單位鐵耗(瓦/千克)4.9494.9865.295168.電樞軛部鐵重千克其中89.21784.67986.175169.電樞軛部鐵耗(瓦)當(dāng)<100千伏安取當(dāng)千伏安取662.327633.344684.429170.電樞槽口氣隙比值2.6672.6672.667171.磁極表面磁密脈動(dòng)系數(shù),對(duì)應(yīng)于查曲線172.磁極表面氣隙磁密脈動(dòng)幅值1923.1231930.3071989.147173.磁極單位表面鐵耗(瓦/厘米)用1mm鋼片時(shí),取槽節(jié)距0.000550.000550.00059174.磁極極掌表面鐵耗0.8440.8090.874175.總鐵耗811.717776.198838.806176.電樞繞組銅耗2524.5032598.8922485.229177.勵(lì)磁損耗1217.0631286.0101313.489178.轉(zhuǎn)子圓周速度(米/秒)23.5523.5523.55179.機(jī)械損耗710.044692.575698.384180.附加損耗以千伏安為單位375375375181.總損耗5.6385.7295.711182.效率93%92.9%92.92%十一、主要材料重量183.銅線總重37.93137.10639.223184.硅鋼片重118.472112.446114.433185.磁極鋼片重50.23047.78948.5945.1復(fù)算程序5.2方案結(jié)果比較與分析單位(cm、kg)方案一方案二方案三每槽導(dǎo)體數(shù)101110氣隙磁密850085008800勵(lì)磁繞組電密468.643495.951471.257電樞鐵心長(zhǎng)21.46220.3720.73電樞繞組銅重15.33715.78915.098電樞齒鐵重12.70612.06012.273電樞軛部鐵重89.21784.67986.175勵(lì)磁繞組銅凈重22.59521.31824.125銅線總重37.93137.10639.223硅鋼片重118.472112.446114.433磁極鋼片重50.23047.78948.594單位:(w/kg)方案一方案二方案三氣隙磁密850085008800每槽導(dǎo)體數(shù)101110電樞齒部鐵耗148.545142.045153.502電樞軛部鐵耗662.327633.344684.429磁極極掌表面鐵耗0.8440.8090.874總鐵耗811.717776.198838.806電樞繞組銅耗2524.5032598.8922485.229勵(lì)磁損耗1217.0631286.0101313.489附加損耗375375375機(jī)械損耗710.044692.575698.384總損耗(kw)5.6385.7295.711效率93%92.9%92.92%15823.06815823.06816381.531456014560150748500850088001923.1231930.3071989.147319.032334.983319.032468.643495.951471.2575.3心得與總結(jié)6.1同步調(diào)速系統(tǒng)類型6.2變頻調(diào)速系統(tǒng)的基本控制類型6.3同步電動(dòng)機(jī)矢量控制系統(tǒng)7.1AutoCAD簡(jiǎn)介7.2畫(huà)定子沖片圖7.3畫(huà)轉(zhuǎn)子沖片圖7.4畫(huà)繞組圖陳世坤電機(jī)設(shè)計(jì)[M]北京:機(jī)械工業(yè)出版社2000李發(fā)海朱東起電機(jī)學(xué)[M]北京:科學(xué)出版社2001韓俊良風(fēng)力發(fā)電設(shè)備的技術(shù)特點(diǎn)及發(fā)展前景[J]大連起重集團(tuán)有限公司設(shè)計(jì)一院2004孫國(guó)偉程小華變速恒頻雙饋風(fēng)力發(fā)電系統(tǒng)及其發(fā)展趨勢(shì)[J]華南理工大學(xué)電力學(xué)院2004.中小電機(jī)行業(yè)發(fā)展趨勢(shì)[J]中國(guó)電器工業(yè)協(xié)會(huì)行業(yè)發(fā)展部2003.1吳旭升孫俊忠未來(lái)電機(jī)的發(fā)展與展望[J]船電技術(shù)2003.2辜成林陳喬夫熊永前電機(jī)學(xué)[M]華中科技大學(xué)出版社2001李隆年王寶玲電機(jī)設(shè)計(jì)[M]清華大學(xué)出版社1992中小型電機(jī)設(shè)計(jì)手冊(cè)[M]機(jī)械工業(yè)出版社上海電器科學(xué)研究所電機(jī)設(shè)計(jì)資料匯編[M]南昌大學(xué)電氣自動(dòng)化系電機(jī)教研室2004孟大偉孔祥春AutoCAD在電機(jī)設(shè)計(jì)中的應(yīng)用[J]哈爾濱電工學(xué)院學(xué)報(bào)1991Vol.14,No3中小型三相異步電動(dòng)機(jī)電磁設(shè)計(jì)手算程序[M]南昌大學(xué)電氣自動(dòng)化系電機(jī)教研室.彭友元電機(jī)繞組手冊(cè)[M]遼寧科學(xué)技術(shù)出版社陳世坤編電機(jī)設(shè)計(jì)[M]機(jī)械工業(yè)出版社李發(fā)海等合編電機(jī)學(xué)[M]科學(xué)出版社辜承林陳橋夫熊永前電機(jī)學(xué)[M]華中科技大學(xué)出版社張躍峰等編AUTOCAD2004入門(mén)與提高[M]清華大學(xué)出版社徐剛最新國(guó)內(nèi)外電機(jī)設(shè)計(jì)制造新工藝新技術(shù)與檢修及質(zhì)量檢測(cè)技術(shù)標(biāo)準(zhǔn)應(yīng)用手冊(cè)(上)[M]銀聲音像出版社張培星變頻器方案[M]北京北洋電子技術(shù)有限公司彭兵相變頻調(diào)速同步電動(dòng)機(jī)設(shè)計(jì)[D]沈陽(yáng)工業(yè)大學(xué)陳伯時(shí)電力拖動(dòng)自動(dòng)控制系統(tǒng)[M]機(jī)械工業(yè)出版社戴文進(jìn)徐龍權(quán)電機(jī)學(xué)[M]清華大學(xué)出版社NANCHANGUNIVERSITY外文資料原文及譯文(2006—2010年)學(xué)院:信息工程學(xué)院系電氣與自動(dòng)化工程系專業(yè):電氣工程及其自動(dòng)化班級(jí):電機(jī)電器062班學(xué)號(hào):6101106076姓名:閆永佳指導(dǎo)教師:黃劭剛起訖日期:2008.3.24~2008.6.08Dead-timeCompensationofSVPWMBasedonDSPTMS320F2812forPMSMSongXuelei*,WenXuhui,GuoXinhua,andZhaoFengInstituteofElectricalEngineering,ChineseAcademyofSciences,Beijing,P.R.ChinaE-mail:songxl@Abstract—Thedead-timeeffectinathree-phasevoltagesourceinvertercanresultinvoltagelosses,currentwaveformdistortionandtorquepulsation.Inordertoimprovethecurrentwaveformanddecreasethetorquepulsation,thispaperproposesadead-timecompensationmethodofSVPWM.Thismethoddividestheiα-iβplaneintosixsectorsandcompensatesthedead-timeofSVPWMaccordingtothesectornumberofstatorcurrentvectordeterminedbytheα-andβ-axiscomponentsofthestatorcurrentvectorinthetwo-phasestaticreferenceframe.Inaddition,thismethodcanbeimplementedentirelythroughsoftwarewithoutanyextrahardware.FinallyexperimentsbasedonDSPTMS320F2812areestablishedandmade,andtheexperimentresultsindicatethattheproposedmethodiscorrectandfeasible.IndexTerms--dead-timecompensation,SVPWM,PMSM,TMS320F2812I.INTRODUCTIONBecausethepermanentmagnetsynchronousmachine(PMSM)hasalotofadvantagessuchashighpowerdensity,highefficiency,hightorquetoinertiaratio,highreliability,etal[1],therefore,thePMSMdrivingsystemhavebeenwidelyusedinmanyapplicationfields,especiallyinhybridelectricvehicles(HEV)inrecentyears[2]-[6].InthePMSMdrivingsystem,thethree-phasevoltagesourceinverterisusuallyadoptedandtheIGBTandMOSFETarealsousedbecauseoftheirfastswitchingfrequency.Forthethree-phasevoltagesourceinverter,inordertoavoidtheshortcircuitofthedclinkoccurringwhenthetwoswitchdevicesofthesamephaseareturnedonsimultaneously,thedead-timeisusuallyinsertedinthegatedrivingswitchsignals.Duringthedurationofthedead-time,bothofthetwoswitchdeviceofthesamephaseareturnedoff.Theexistingofthedead-timewillleadtoaseriesofdead-timeeffectproblemssuchasvoltagelosses,currentwaveformdistortionandtorquepulsation,especiallyundertheconditionofsmallcurrentorlowspeed.SVPWM(SpaceVectorPulseWidthModulation)isapopularmodulationmethodforthree-phasevoltagesourceinverterinmotordrivingsystem.Inordertoimprovethecurrentwaveformofmotorsanddecreasethetorquepulsationofmotors,severaldead-timecompensationmethodsofSVPWMhavebeenresearchedandusedinthemotordrivingsystem[7]-[11].Mostofthecompensationmethodsarebasedonthetheoryofaveragevoltagedeviation.Inthispaper,anoveldead-timecompensationmethodofSVPWM,whichisalsobasedonthetheoryofaveragevoltagedeviation,isproposed.Thismethoddividestheiα-iβplaneintosixsectorsandcompensatesthedeadtimeofSVPWMaccordingtothestatorcurrentvectorangleφdeterminedbytheα-andβ-axiscomponentsofthestatorcurrentvectorintheα-βreferenceframe.Inaddition,thismethodcanbeimplementedentirelythroughsoftwarewithoutanyextrahardwaredesign.FinallyexperimentsaremadeonthePMSMdrivingplatformbasedonDSPTMS320F2812totestandverifytheproposedcompensationmethod.II.DEAD-TIMECOMPENSATIONMETHODFig.1showsthetopologydiagramofthePMSMdrivingsystemwhoseinvertunitadoptsthethree-phasevoltagesourceinverter.InFig.1,Q1,Q2,Q3,Q4,Q5andQ6aresixIGBTsofthethree-phasevoltagesourceinverter,andD1,D2,D3,D4,D5andD6aretheirreverseparalleldiodesrespectively.Inaddition,thedrivingswitchsignalsg1,g2,g3,g4,g5andg6areprovidedbythecontrolunitofthedrivingsystem.Definethephasecurrentsia,ibandicarepositivewhentheyflowfromtheinvertertoPMSM,andnegativewhentheyflowfromPMSMtotheinverter.ThereareeightswitchcombinationstatesforthesixIGBTsinthethreephasevoltagesourceinverter,andduringthedurationofdead-time,therearecorrespondinglysixcurrentcombinationstatesforthree-phasecurrentsia,ibandicaccordingtotheirpolarity:(1)ia>0,ib<0andic<0;(2)ia>0,ib>0andic<0;(3)ia<0,ib>0andic<0;(4)ia<0,ib>0andic>0;(5)ia<0,ib<0andic>0;(6)ia>0,ib<0andic>0.Itisveryimportantanddifficulttodetectthezerocrosspointorthepolarityofeachphasecurrent.Traditionally,ifthezero-crosspointisdetectdirectlythroughA/DconverterofDSPorMCU,biggermeasurementdeviationwillbeledespeciallyundertheconditionofsmallcurrent,whichwillresultinbiggerdead-timecompensationdeviationandalsoaffecttheresultofdead-timecompensation.Therefore,thispaperadoptsanindirectlymethodtodetectthezero-crosspointofphasecurrent,whichisbasedonthecurrentvectorangleφinthetwo-phasestaticreferenceframe.Forconvenientanalysisandillustration,placethethree-phasecurrentsia,ib,icinthethree-phasestaticreferenceframeandthetwocurrentcomponentsiα,iβofthecurrentvectorinthetwo-phasestaticreferenceframeintothesamefigure,whichisshowninFig.2.Accordingtothepolarityofthree-phasecurrentsia,ib,ic,theiα-iβplaneinthetwo-phasestaticreferenceframecanbedividedintosixsectors:I(1),II(2),III(3),IV(4),V(5)andVI(6).Foreachsectorintheiα-iβplane,thereisacorrespondingdead-timecompensationrule.Inotherwords,oncethesectorwhichthecurrentvectorbelongstoisknown,thedead-timeeffectcanbecompensatedaccordingtothecorrespondingcompensationrule.Therefore,recognizingthesectornumberofthecurrentvectoristhekeyproblem.Inthispaper,thesectornumberisdeterminedbythecurrentvectorangleφwhichcanbecalculatedthroughtheα-andβ-axiscomponentsofthestatorcurrentvector.Equation(1)showsthecalculationmethodofthecurrentvectorφ,andequation(2)showstherelationshipbetweenthesectornumberandthecurrentvectorφ.φ=kπ+arctan(iβ/iα)(k=0,1)Fig.2.CurrentPolarityandCurrentVectorAngle?TABLEIDEAD-TIMECOMPENSATIONRULESTABLEOFSVPWM(2)Forthree-phasevoltagesourceinverter,theessenceofdead-timecompensationistocompensatingthevoltagedeviation.However,inthedigitalmotordrivingandcontrolsystem,voltageregulationisimplementedthroughpulsewidthmodulation,thatis,throughregulatingthedutycycleofvoltagepulsewhichhassomethingtodowiththepulsewidthTinonePWMperiodTpwm.Therefore,infactitisthepulsewidthTthatiscompensatedinthepracticalapplication.TABLEIshowsthedead-timecompensationrulescorrespondingwiththepolarityofthree-phasecurrentsia,ib,icandthesectornumberofthecurrentvectorintheiα-iβplane.Itcanbeseenthatfordifferentsectorsoftheiα-iβplane,thecompensationvaluesarecorrespondinglydifferent.Inoneword,theproposeddead-timecompensationmethodcanbecarriedoutthroughthefollowingsteps:(1)Calculatethecurrentvectorangleφthroughtheα-andβ-axiscomponentsofthestatorcurrentvectorinthetwo-phasestaticreferenceframeaccordingtoequation(1).(2)Determinethesectornumberthroughthecurrentvectorangleφaccordingtoequation(2).(3)Executethedead-timecompensationalgorithmaccordingtothecompensationrulestableTABLEI.III.EXPERIMENTSInordertotestandverifytheproposeddead-timecompensationmethodofSVPWM,experimentsareestablishedandmade.TheexperimentsystemconsistsofPMSM,three-phasevoltagesourceinverter,controlplatform,dynamometer,heatdissipationsystem,etal.ThetypeofIGBTintheinverterisCM600DY-24AproducedbyMitsubishi.ThecontrolplatformisbasedonDSPTMS320F2812producedbyTexasInstrument.ItisaspecialmotorcontrolDSPwhichhasmanyadvantagesandcanimplementhigh-performancemotorcontrolsuchasFOC(FieldOrientedControl)andDTC(DirectTorqueControl).ThemainparametersofthecontrolobjectPMSMusedinexperimentsarelistedinTABLEII.Fordifferentpulsewidthcompensationvaluesof0.76μs,1.10μs,1.33μsand1.60μs,thedead-timecompensationexperimentsareallmade.Fig.3showstheexperimentwaveformsofthree-phasestatorcurrentsandthesectornumberofstatorcurrentvectorfordifferentpulsewidthcompensationvalues,andFig.4showsthecorrespondingfrequencyspectrums.TABLEIIMAINPARAMETERSOFPMSMUSEDINEXPERIMENTS(a)NoCompensation(b)PulseWidthCompensationValue=0.76μs(c)PulseWidthCompensationValue=1.10μs(d)PulseWidthCompensationValue=1.33μs(e)PulseWidthCompensationValue=1.60μsFig.3.ExperimentWaveformsofThree-phaseStatorCurrentsHere,theCPUfrequencyofDSPissetat150MHz,theswitchingfrequencyofIGBTsinthree-phasevoltageinverterissetat10kHz,thedead-timeissetat3.2μsthroughthehardwareandsoftwareofDSP,themotorcontrolmethodadoptsFOCalgorithm,thedclinkvoltageissetatabout330V,andthephasecurrentiscontrolledatabout10A.(a)NoCompensation(b)PulseWidthCompensationValue=0.76μs(c)PulseWidthCompensationValue=1.10μs(d)PulseWidthCompensationValue=1.33μs(e)PulseWidthCompensationValue=1.60μsFig.4.FrequencySpectrumofStatorCurrent(PhaseA)ItcanbeseenfromFig.3andFig.4that,comparedwithexperimentresultsofnocompensation,throughtheproposeddead-timecompensationalgorithmthethreephasestatorcurrentwaveformsofPMSMareallimprovedeffectivelyandtheharmoniccomponentsofthree-phasestatorcurrentsarealsodecreasedeffectively.Especiallywhenthepulsewidthcompensationvalueissetatabout1.10μs,comparedwithexperimentresultsattheotherpulsewidthcompensationvaluesof0.76μ,1.33μsand1.60μs,thecompensationresultisthebestandtheharmoniccomponentsofthree-phasestatorcurrentsaretheleast.Therefore,theproposeddead-timecompensationmethodiscorrectandfeasible.IV.CONCLUSIONSTheproposeddead-timecompensationmethodcanbeimplementedeasilythroughsoftwarealgorithmwithoutanyextrahardwaredesign.Solongasthecurrentvectorangleφisdeterminedbytheα-andβ-axiscomponentsofstatorcurrentvectorinthetwo-phasestaticreferenceframe,thedead-timecompensationalgorithmcanbecarriedouteffectivelyaccordingtothecorrespondingdead-timecompensationrulestable.FinallyexperimentsareestablishedandmadeonthePMSMdrivingplatformbasedonDSPTMS320F2812andtheresultsindicatethattheproposedmethodcanimprovethecurrentdistortionanddecreasethetorquepulsationeffectively,especiallywhenthepulsewidthcompensationvalueisequaltoabout1.10μs.Therefore,theproposedmethodiscorrectandfeasible.REFERENCES[1]SongChi,ZhengZhang,LongyaXu,“ARobust,EfficiencyOptimizedFlux-WeakeningControlAlgorithmforPMSynchronousMachines”,Proceedingsofthe2007IEEEIndustryApplicationsConference,pp.1308-1314,2007.[2]ZhangQianfan,LiuXiaofei,“PermanentMagneticSynchronousMotorandDrivesAppliedonaMid-sizeHybridElectricCar”,Proceedingsofthe2008IEEEVehiclePowerandPropulsionConference,pp.1-5,2008.[3]Y.Dai,L.Song,S.Cui,“DevelopmentofPMSMDrivesforHybridElectricCarApplications”,IEEETransactionsonMagnetics,Vol.43,No.1,pp.434-437,2007.[4]RahmanM.A.,“IPMMotorDrivesforHybridElectricVehicles”,Proceedingsofthe2007InternationalAegeanconferenceonElectricalMachinesandPowerElectronics,pp.109-115,2007.[5]RahmanM.A.,“HighEfficiencyIPMMotorDrivesforHybridElectricVehicles”,Proceedingsofthe2007CanadianConferenceonElectricalandComputerEngineering,pp.252-255,2007.[6]FuZ.X.,“Real-timePredictionofTorqueAvailabilityofanIPMSynchronousMachineDriveforHybridElectricVehicles”,Proceedingsofthe2005IEEEInternationalConferenceonElectricMachinesandDrives,pp.199-206,2005.[7]WangGao-lin,YuYong,YangRong-feng,XuDian-guo,“Dead-timeCompensationofSpaceVectorPWMInverterforInductionMotor”,ProceedingsoftheCSEE,Vol.28,No.15,pp.79-83,2008.[8]ZeyunChao,ZhixinXu,LiliKong,“ResearchofDeadtimeCompensationinSVPWMModulator”,ProceedingsofICEMS2008,pp.1973-1975,2008.[9]ZhouL.Q.,“Dead-timeCompensationMethodofSVPWMBasedonDSP”,Proceedingsofthe4thIEEEConferenceonIndustrialElectronicsandApplications,pp.2355-2358,2009.[10]QingboHu,HaibingHu,ZhengyuLu,WenxiYao,“ANovelMethodforDead-timeCompensationBasedonSVPWM”,ProceedingsofAPEC2005,Vol.3,pp.1867-1870,2005.[11]N.Urasaki,T.Senjyu,K.Uezato,T.Funabashi,“AnAdaptiveDead-timeCompensationStrategyforVoltageSourceInverterFedMotorDrives”,IEEETransactionsonPowerElectronics,vol.20,No.5,pp.1150-1160,2005.外文資料譯文基于TMS320F2812DSP的有死區(qū)時(shí)間補(bǔ)償?shù)腟VPWM調(diào)速永磁同步電動(dòng)機(jī)宋雪蕾*溫徐匯,郭新華和趙峰北京電機(jī)工程學(xué)會(huì),中國(guó)科學(xué)院,E-mail:songxl@引言死區(qū)補(bǔ)償方法本文,該扇形的數(shù)目取決于電流矢量角φ,它可以通過(guò)計(jì)算α-和β-軸定子組件的電流矢量來(lái)得到。方程(1)顯示當(dāng)前向量φ的計(jì)算方法,和方程(2)顯示了扇形和電流矢量φ之間的數(shù)量關(guān)系。φ=kπ+arctan(iβ/iα)(k=0,1)三.實(shí)驗(yàn)參數(shù)單位數(shù)值相數(shù)-3極對(duì)數(shù)-5額定功率KW52額定轉(zhuǎn)速Rpm2500額定轉(zhuǎn)矩Nm200永久磁Wb0.104感應(yīng)系數(shù)(d/q)mH0.33/0.50定子繞組的電阻Ω0.024圖3。實(shí)驗(yàn)波形三相定子電流在這里,DSP的CPU的頻率為150MHz,IGBT的開(kāi)關(guān)的三相電壓型逆變器頻率為10kHz,通過(guò)硬件和DSP軟件死區(qū)時(shí)間定為3.2μs,F(xiàn)OC電機(jī)控制方法采用的算法,鏈接的直流電壓設(shè)置為約330V,和相電流控制

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論