版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
貨幣政策風(fēng)險(xiǎn)溢價(jià)中英文2018原文Showmethemoney:ThemonetarypolicyriskpremiumAliOzdagli,MihailVelikovAbstractWecreateaparsimoniousmonetarypolicyexposure(MPE)indexbasedonobservablefirmcharacteristicsthatpreviousstudieslinktohowstocksreacttomonetarypolicy.Ourindexsuccessfullycapturesstocks'responsestobothconventionalandunconventionalmonetarypolicy.Stockswhosepricesreactmorepositivelytoexpansionarymonetarypolicy(high-MPEstocks)earnloweraveragereturns.Thisresultisconsistentwiththenotionthathigh-MPEstocksprovideahedgeagainstbadeconomicshocks,towhichtheFederalReserverespondswithexpansionarymonetarypolicy.Along-shorttradingstrategydesignedtoexploitthiseffectachievesanannualizedSharpeRatioof0.77.Keywords:Monetarypolicy,Assetpricing,RiskfactorsIntroductionAlargebodyofliteratureinmacroeconomicsandfinancestudiestheeffectsofmonetarypolicyonassetprices.Inarecentseminalcontribution,BernankeandKuttner(2005)showthatasurprise25-basis-pointcutinthefederalfundstargetrateisassociatedwithanincreaseofabout1%inbroadstockindexes.Overall,theacademicresearchandpractitionersagreethatmonetarypolicyaffectsstockpricessignificantlyandthatstockpricesoffirmswithdifferentcharacteristicsreactdifferentlytomonetarypolicy.1However,theeffectofmonetarypolicyonthecross-sectionofequityriskpremiumsisnotaswellunderstood.Whileseveralclassesoftheoreticalmodelsimplythatmonetarypolicyisanimportantsourceofriskinthestockmarket,theydifferwidelyintheirpredictionsregardingtherelationbetweenmonetarypolicyexposureandtheriskpremium.Inthispaper,wecreateamonetarypolicyexposure(MPE)indexbasedonobservablefirmcharacteristicsthatpreviousstudieslinktomonetarypolicysensitivityofstockprices.Usingthisindex,wefindthatstockswhosepricesreactmorepositivelytoexpansionarymonetarypolicy(high-MPEstocks)earnloweraveragereturnsthanlow-MPEstocks.Thispremiumiseconomicallysignificantandarobustfeatureofthedata.Along-short(low-minus-highMPE)tradingstrategydesignedtoexploitthiseffectachievesanannualizedvalue-weightedreturnof9.12%from1975to2015.OurresultsareconsistentwiththenotionthatstockswithhighmonetarypolicyexposureearnlowerreturnsbecausetheFederalReserverespondstobadeconomicshockswithexpansionarymonetarypolicyandhencehigh-MPEstocksprovideahedgeagainsttheseshocks.AnimportantchallengeincreatingtheMPEindexinvolvesidentifyingthestocks'reactiontoFederalReservepolicy.BernankeandKuttner(2005)notethatstockpricesareforward-lookingandshouldnotreacttoanticipatedpolicyratechanges.Therefore,weestimatearegressionofstockreturnsonunanticipated(surprise)policyratechanges,wherethepolicysurprisesarederivedfrominterestratefuturesonFederalOpenMarketCommittee(FOMC)meetingdatesasintheirpaper.AsBernankeandKuttner(2005)note,assetpricesmayalsorespondtorevisionsinexpectationsaboutfuturepolicyondateswithoutanFOMCmeeting,whichinturnmaybedrivenbynewsaboutchangingeconomicconditions.WefollowtheirapproachofusingunanticipatedpolicychangesonFOMCmeetingdatesbecause,intheirwords,itallowsusto“discernmoreclearlythestockmarketreactiontomonetarypolicy.”O(jiān)urregressionsusetheinteractionofthepolicysurpriseswithfirmcharacteristicsthatarelinkedtopolicysensitivitybythepreviousliterature(e.g.,Weber,Ozdagli,2018).Thismethodyieldsanindexbasedonthecontributionofeachcharacteristictothemonetarypolicyexposure.ThecharacteristicsunderlyingtheMPEindexcapturetheeffectsofvariousmonetarypolicytransmissionmechanisms,includingcreditchannel,balancesheetliquidity,discountrateeffect,andnominalrigidities.Accordingly,thefirmcharacteristicsincludemeasuresoffinancialconstraints,cashandshort-terminvestments,cashflowdurationandvolatility,andoperatingprofitability.Weshowthatourindexsuccessfullycapturesstocks'responsestomonetarypolicyunderdifferentpolicyregimes,includingpre-1994,1994-008,andpost-2008periods.ForadditionalevidenceofthestabilizerchannelandtheabilityofourMPEindextocapturethepolicyexposure,wenotethatthedualmandateoftheFederalReserve(stablepricesandsustainableemployment)requiresittostabilizetheeconomybytighteningpolicyinresponsetopositivesurprisesintheconsumerpriceindex(CPI)andemployment(Gurkaynaketal.,2005b).Thisleadstotwoimportanttestableimplications.First,thestabilizerchannelpredictsthatthelow-minus-highMPEportfolioshouldperformwellondayswithpositiveCPIandemploymentsurprisesbecausesuchsurprisesleadtoanexpectationoftightermonetarypolicy.Consistentwiththisprediction,wefindthatthereturntothelow-minus-highMPEportfolioincreasesinresponsetopositiveCPIandemploymentsurprisesderivedfromsurveyexpectationsasinGurkaynaketal.(2005b).Second,ifourMPEindexcapturespurelytheexposuretomonetarypolicy,theCPIandemploymentnewsshouldaffectthelow-minus-highMPEportfolioonlythroughtheireffectonmonetarypolicyexpectations.Consistentwiththisimplication,wefindthattheeffectofemploymentandCPIsurprisesonthelow-minus-highMPEportfolioallbutdisappearsoncewecontrolforchangesinpolicyexpectations.Finally,weconductabatteryofteststochecktherobustnessofthereturnpremiumonthelong-shortstrategy.Atradableversionofthelong-shortstrategythatusesonlyhistoricallyavailableinformationfortheconstructionoftheMPEindexgeneratesastatisticallysignificantaveragereturnof71basispointspermonthaftertransactioncosts.Inaddition,wedemonstratethatthepredictabilitywedocumentcannotbeexplainedbythepre-FOMCannouncementdriftdiscussedbyLuccaandMoench(2015)orthebetting-against-beta(BAB)effectdiscussedbyBlack(1972)andFrazziniandPedersen(2014).Moreover,thetradingstrategieswereportsurvivecontrolsfortheunderlyingcharacteristicsusedtoconstructtheMPEindexaswellasthe23anomalysignalsinNovy-MarxandVelikov(2016).Ourpaperisrelatedtoimportantcontributionsintheassetpricingliteraturethatuseindicesbasedonfirmcharacteristicstostudythecross-sectionofstockreturns.PastorandStambaugh(2003)usestock-levelcharacteristicstopredictfirms'exposuretoaggregateliquidityrisk,WhitedandWu(2006)createanindexoffinancialconstraints,Campbelletal.(2008)createafinancialdistressindex,andGuetal.(2018)createanindexofinvestmentirreversibilityandeachpaperstudiesthe? ? ? T? ? ? ? ? Tassetpricingimplicationsofitsrespectiveindex.Ourpaperbuildsabridgebetweentheliteraturethatconnectsfirmcharacteristicstotheirexpectedreturns,asinFamaandFrench(1993),andtheliteraturethatstudiesmacroeconomicaggregatesaspredictorsofassetreturns,asinLettauandLudvigson(2001),ParkerandJulliard(2005),Yogo(2006),andBalietal.(2017).Eventhoughthereisanextensivetheoreticalliteraturethatstudiestheimpactofmonetarypolicyonriskpremiums,theempiricalevidenceisscant.Creatingtheindexofmonetarypolicyexposureallowsustoresolvetheambiguityinthepredictionsoftheoreticalmodelsandshowthatmonetarypolicyexposureisastrongpredictorofreturnsinthecross-sectionofequities.Moreover,thepredictabilitywedocumentisrobusttothestricterthresholdsforstatisticalsignificancesuggestedbyHarveyetal.(2016)andNovy-Marx(2016).OurpaperalsocontributestotheburgeoningliteratureonFOMCcyclesandaggregatestockreturns(Lucca,Moench,2015,Cieslak,Morse,Vissing-Jorgensen,2018,Neuhierl,Weber)butinsteadfocusesonthecross-sectionofreturns.TheoreticalconsiderationsThesignofthemonetarypolicyriskpremiumStandardassetpricingtheorytellsusthattheriskpremiumofmonetarypolicyistheproductofthepriceofmonetarypolicyriskandtheexposuretomonetarypolicy.Inthissection,wesummarizetheimplicationsofdifferenttheoriesforthesetwocomponentsandshowthatthemonetarypolicyriskpremiumcanbepositiveornegativedependingontheunderlyingassumptions.Therefore,weconcludethatthesignandthesizeofthisriskpremiumisanempiricalquestionwhichwestudyinthefollowingsections.BansalandColeman(1996)andChanetal.(1996)aretwoearlyexamplesthatanalyzetheeffectofmonetarypolicyonequitypremiums.Bothofthesemodelsfeaturecash-in-advanceconstraintsfromtheseminalpaperofLucasandStokey(1987)inamodelwhereinvestors'utilitydependsontheconsumptionofcashandcreditgoods.TheinformationinthesepapersislatercrystallizedinBalduzzi(2007)whoshowsthatthepriceofmonetarypolicyrisk,andhencethesignofthepolicyriskpremium,dependsontheelasticityofsubstitutionbetweencashandcreditgoods.Ontheonehand,anincreaseinrealmoneysupplyshiftsconsumptionfromcreditgoodstocashgoodsandthereforeincreasesthemarginalutilityofconsumingcreditgoods,assumingthattheutilityisconcaveincreditgoods.Ontheotherhand,assumingcashandcreditgoodsaresubstitutes,theincreaseintheconsumptionofcashgoodsreducesthemarginalutilityofconsumingcreditgoods.Ifthefirst(second)effectdominates,thenrealmoneysupplycommandsanegative(positive)riskpremium.Morerecently,New-Keynesianmonetarymodelsthatincorporatenominalandrealrigiditieshavereceivedincreasingattentionintheliteraturestudyingtheriskofequities,e.g.,LiandPalomino(2014)andWeber(2015).Inthesemodels,anexpansionarypolicysurpriseincreasesconsumptiongrowth,consistentwiththetime-seriesevidencefrom,forexample,Christianoetal.(2005)andSmetsandWouters(2007).Theincreaseinconsumptiondecreasesthemarginalutilityofconsumption.Thismechanismgeneratesapositiverelationbetweenmonetarycontractionsandthemarginalvalueofwealth,leadingtoapositiveriskpriceofmonetarypolicy.Therefore,stocksthatreactmorepositivelytoanexpansionarypolicysurpriseshouldcommandahigherriskpremium.Anotherrecentstrandofliteraturestudiestheassetpricingimplicationsofmacroeconomicmodelswithfinancialfrictions,suchasthoseinBernankeandBlinder(1988).Thecentralthemeofthisliteratureisthatthemarginalinvestorislikelyafinancialintermediary,sothestochasticdiscountfactorshoulddependonthehealthofthefinancialsector,orfundingliquidity,whichinturndeterminesthemarginalvalueofwealth.Thus,assetsthatpayoffintimesofhighmarginalvalueofwealth,i.e.,timeswithlowfundingliquidity,shouldbelessrisky.5Empirically,Adrianetal.(2014)andHeetal.(2017)findthatfundingliquidityofintermediariesexplainsthereturnsonawiderangeofassetclasses.Drechsleretal.(2018)provideadynamicassetpricingmodellinkingequityriskpremiumstomonetarypolicythroughthisfundingliquiditychannel.Intheirmodel,loweringthenominalinterestratereducesthecostofleverageforfinancialintermediariesandeffectivelyreducestheirexternalfinancepremium,therebyincreasingrisktakingand,inturn,decreasingriskpremiums.BoththeNew-Keynesianmodelsandthefundingliquiditymodelsoperateundertheviewthatmonetarypolicyisa“driver”ofbusinesscycles.Thatis,monetarypolicyimpactsthemarginalvalueofwealthbyaffectingrealvariables,whichinturntransformsitintoasourceofpricedrisk.Alternatively,monetarypolicycanbeviewedasa“stabilizer”ofbusinesscycles,consistentwiththeroleoftheFederalReserveintheeconomy.Inparticular,monetarypolicyismorelikelytobeexpansionary(contractionary)followingnegative(positive)macroeconomicnews(Gurkaynaketal.,2005b).Sincenegativeeconomicshocksincreasethemarginalvalueofwealth,assetsthataremorelikelytopayoffafteranexpansionarymonetarypolicyarepreciselythosethatprovideinvestorswithadditionalfundsintimesofneedandthereforehavelowerexpectedreturns.6InAppendixA.2,weoutlineasimplemathematicalmodelthatillustratestheassetpricingimplicationsofthedriverandstabilizereffectsofmonetarypolicy.Weshowthatthemonetarypolicyriskpremiumcanbepositiveornegativedependingonwhicheffectdominates.TransmissionchannelsofmonetarypolicyThemainempiricalchallengeinourpaperistheidentificationofthecross-sectionaldifferencesinmonetarypolicyexposureofindividualfirms.Whatisthebestwaytoestimatetheexposure?Adirectapproachwouldbesimplyregressingthereturnsofeachstockseparatelyonmonetarypolicysurprises.However,themajorityofstockshavehighreturnvolatilityorlackalongenoughreturnhistory,whichleadstonoisyexposureestimates(Cochrane,2005,p.436).Instead,wefollowthefootstepsofearlierimportantcontributionstoassetpricingliteraturethatuseindicesbasedonfirmcharacteristicstostudythecross-sectionofstockreturns(e.g.,Campbell,Hilscher,Szilagyi,2008,Gu,Hackbarth,Johnson,2018).Thetraditionofcreatingindicesisalsopopularincorporatefinance(Altman,1968,Kaplan,Zingales,1997,D'Acunto,Weber,Yang).Financialconstraints(Creditchannel):Theeffectoffirms'financialconstraintsonmonetarypolicytransmissionhasbeenattheheartofpolicyandacademicdiscussions(Gertler,Gilchrist,1994,Fisher,1933).Whilethereisanextensiveliteraturefocusingontheimplicationsofthiscreditchannelforrealvariables,theliteraturestudyingitsimplicationsforstockpricesisrelativelyscarce.Perez-QuirosandTimmermann(2000)usesmallerfirmsizeasafinancialconstraintmeasureandfindthatstockpricesofsmallerfirmsaremoreresponsivetomonetarypolicychanges,measuredbymoneysupply.Lamontetal.(2001)recognizethatmonetarypolicyisimplementedbythechoiceofpolicyrates,ratherthanmoneysupply,butdonotfindanysignificantrelationbetweenfinancialconstraintsandpolicysensitivityofstockpriceswhentheyusethechangeinpolicyrate.Ozdagli(2018)usestheunexpectedcomponentofthepolicyratechangeasinBernankeandKuttner(2005)becausestocksshouldnotreacttoexpectedchangesinmonetarypolicy.Usingbothfinancialconstraintindicesandanaturalexperiment,hefindsthatmoreconstrainedfirmscanbelessresponsivetomonetarypolicybecausethesefirmsrelylessonexternalfinance,andhencearelessaffectedbythechangesinthecostofexternalfinance.FollowingOzdagli(2018),weusethefinancialconstraintindexcreatedbyWhitedandWu(2006)asourfinancialconstraintsproxy.Cashandshort-terminvestments(Liquidityeffect):Thesearethemostliquidassetsofthefirmandaredirectlyrelatedtothemonetarybase,broadlydefined.Ontheonehand,firmswithahigheramountofcashcanreactmorenegativelytoapolicyrateincreasebecausetheinterestrateistheopportunitycostofholdingcash(Baumol,1952);ontheotherhand,corporatecashreservescandampentheeffectofmonetarypolicybymakinginvestmentlesssensitivetopolicy(Gaoetal.,2018).Similarly,iffirmsdeposittheircashinashort-termsavingsoranotherinterest-bearingaccount,anincreaseintheinterestratecanactuallyhelpthemobtainadditionalliquidfunds,whichwouldalsodampentheeffectofmonetarypolicy.Cashflowduration(Discountrateeffect):Macaulay(1938)durationhasbeenwidelyemployedbyfixed-incomeanalystsduetoitsclearrelationtotheinterestratesensitivityofbondpricesthroughthediscountrateeffect.Morerecently,theconceptofdurationisstudiedbyDechowetal.(2004)andWeber(2018)inthecontextofequitymarketsandtheconnectionofequitydurationtointerestratesensitivityofstocksisrecognizedbyinvestors(e.g.,DeutscheBank,2010).Ozdagli(2018)findsthatstocksoffirmsthatexpecttohavecashflowsfartherinthefuture,andthereforehavegreaterequityduration,aremoreaffectedbymonetarypolicy,consistentwiththenotionthatthepresentvalueoflatercashflowsaremoreaffectedbythechangesindiscountrate.Cashflowvolatility:Cashflowvolatilitymaycapturethemonetarypolicysensitivityofafirm'sstockpriceinmultipleways,asexplainedinOzdagli(2018).Forexample,volatilitycanberelatedtocashflowdurationandcancaptureaspectsthereofnotperfectlycapturedbystandardcashflowdurationmeasures.Ontheonehand,firmswithlowervolatilitymayhavelowerdefaultlikelihoodandthereforelongerlivesandhigherdurationofcashflows.Ontheotherhand,alowervolatilitymayalsoimplyalowervalueoftheoptiontodelayinvestmentandthereforefirmswithlowervolatilitymayincreasecashflowdurationbyincreasinginvestmenttodayinexchangeforcashflowsinthefuture.Asanotherexamplefortheimportanceofvolatility,highercashflowvolatilitymayimplythatthefirmneedstorelyonexternalfinancingmoreoften,whichincreasestheimportanceofthecostofexternalfinancingwhichinturnisdirectlyaffectedbymonetarypolicy.Operatingprofitability(Nominalrigidities):NominalrigiditiesintheformofstickypricesandwagesareanimportantingredientinNew-Keynesianmacroeconomicmodels.7Whilefirm-leveldataonnominalrigiditiesarenotavailablefortheuniverseofstocks,operatingprofitabilitycanstillprovideawindowintotheeffectsofnominalrigidities.Inparticular,ifinputprices,e.g.,wages,aresticky,anexpansionarymonetarypolicywillhavealargeeffectonthefirms'revenueswithoutchangingthetotalcostofinputsasmuch,drivingstockpricesup.Theresultingpercentageincreaseinstockpricewillbestrongerforfirmswhoserevenuesareclosertotheirinputcosts,i.e.,thosethathavelowprofitability,becauseoftheoperatingleverageeffectcreatedbyrelativelyfixedinputcosts.Morerecently,Gomesetal.(2016)provideamechanismwhereexpansionarymonetarypolicyreducestherealdebtburdenoffirmsduetotheirnominalobligationstolenders.This“stickyleverage”mechanismworksinawaysimilartothestickywagechanneldescribedaboveinthatstickywagesreducetherealburdenofnominalobligationstoemployeesofafirmafteranexpansionarypolicy.Therefore,weexpectstickyleveragetoincreasethepolicysensitivityofstockpricesoflessprofitablefirms,aneffectalsodiscussedinOzdagliandWeber(2017).Followingananalogousintuition,iffirms'outputpricesaremorestickythantheirinputprices,anexpansionarymonetarypolicywillleadtoagreaterincreaseininputcoststhanthefirms'revenues,eatingawaytheirprofits,andthusreducingtheirstockprices.However,thisreductionwouldbesmallerinpercentagetermsforfirmswithhigherprofitability.AssetpricingimplicationsofmonetarypolicyexposureInthissectionweanalyzethestockreturnsofdifferentportfolioscreatedbysortingstocksbasedonourMPEindex.WefirstshowthatportfoliosoffirmswithhigherMPEearn,onaverage,lowerreturnsthanportfoliosoffirmswithlowerMPE,evenaftercontrollingforotherwell-knownassetpricingfactors.ThisresultsuggeststhatthestabilizerchanneldiscussedinSection2.1isthemaindrivingforcebehindtheriskinessofdifferentMPEportfolios.WeprovidefurtherevidenceonthestabilizerchannelandthatourMPEindexcapturespurelymonetarypolicyexposure,bystudyinghowMPEportfoliosrespondtothemacroeconomicnewsthatislikelytotriggerachangeinmonetarypolicy.Moreover,wereportthatanimplementableversionofourMPEtradingstrategy,basedonlyonhistoricallyavailableinformation,generatessignificantaveragereturnsevenafteraccountingfortransactioncostsandstandardassetpricingfactors.Finally,wecompareourapproachwithanalternativeapproachwherewecalculatethepolicysensitivityofeachstockbyregressingeachstock'sreturnsseparatelyonmonetarypolicysurpriseswithoutinteractingthesesurpriseswithanyfirm-levelcharacteristic.Wefindthat,whileatradingstrategybasedonthisalternativeapproachalsogeneratespositivereturns,itisdominatedbyourMPE-index-basedstrategy.Additionalevidenceonthestabilizerchannel:theresponseoftheMPE-sortedportfoliotoinflationandemploymentnewsTheFederalReserveActestablishesstablepricesandmaximumsustainableemploymentasthedualmandateoftheFederalReserveandtheFederalReservepaysparticularattentiontonewsabouttheconsumerpriceindex(CPI)andemployment.Thisleadstotwoimportanttestableimplicationsforourlow-minus-highMPEportfolio.First,thelong/short(low-minus-highMPE)portfolioshouldreactmorepositivelytonewsaboutemploymentandconsumerpriceindexthatleadstoanexpectationoftightermonetarypolicy.Accordingtothestabilizerchannel,positiveCPIandemploymentsurprisesleadtoanexpectationofatightermonetarypolicyastheFederalReservetriestostabilizetheeconomy(Gurkaynaketal.,2005b).Therefore,thelow-minus-highMPEportfolioshouldincreaseinresponsetopositiveCPIandemploymentsurprises.Second,iftheMPEindexcapturespurelythemonetarypolicyexposure,theresponseofthelow-minus-highMPEportfoliotoemploymentandCPInewsshouldlargelydisappearoncewecontrolfortheexpectedchangesinfuturepolicyratesduetothenewsbecausetheresponseofthelow-minus-highMPEportfoliotothisnewsstemsfromitsexposuretomonetarypolicy.Inordertotestthesetwohypotheses,wecreateadailyseriesofemploymentandpriceindexsurprises,followingGurkaynaketal.(2005b).Foremployment,weusenon-farmpayrollstatisticsannouncedmonthly.10ForthepriceindexweusethecoreCPInumbersthattheBureauofLaborStatistics(BLS)announcesinthemiddleofeverymonth.TheCPIandnon-farmpayrollsurpriseseriesarecomputedasthereleasedvaluesminusthemarketexpectation,wherethemarketexpectationismeasuredusingthemedianmarketforecastaspublishedbyMoneyMarketServices(nowknownasInformaGlobalMarkets)theFridaybeforeeachrelease.FollowingGurkaynaketal.(2005b),wereplacemissingobservationsforthesurpriseswithzeros.Forthechangesinpolicyexpectations,weusethechangesintheone-quarter-aheadEurodollarfutures(ED1)rate.Weusethismeasureinsteadofthecurrent-monthfederalfundsfuturesbecausemanymonthsdonotincludeanFOMCmeetingfollowingthedateofanemploymentorCPIannouncement.BecausethepolicyratewouldnotadjustaftertheemploymentorCPIannouncementsinthosemonths,thepriceofthecurrent-monthFedFundsfutureswouldnotmoveandhencenotcapturethechangeinnear-termexpectationsaboutmonetarypolicyduetoemploymentorCPIannouncements.Therefore,wecapturethechangesinnear-termexpectationsusingED1,whichalsoallowsustostudyboththeconventionalandunconventional(zero-lower-bound)monetarypolicyperiodsasdiscussedinSection3.3.ED1hastheadditionaladvantageofbeingpotentiallymoreliquidthanfederalfundsfuturesoutsidetheFOMCdatesduetoitsgreatervolume.Thechangesinpolicyexpectationsequalthenegativeofthedailychangeintheone-quarter-aheadEurodollarfuturesratesothatapositivevalueisexpansionary,inaccordancewithSection3.OurdataperiodstartsinApril1986duetotheavailabilityoftheEurodollarfuturestradingdata.BecauseweareinterestedinchangesinpolicyexpectationsduetochangesinemploymentandpriceindexnewsweomitthedatesoftheFOMCannouncements.Table4reportstheestimatesfromregressingthedailyportfolioreturnsofthelong/short(low-minus-highMPE)portfolioonchangesinpolicyexpectationsandtheemploymentandpriceindexsurprises.Column1showsthatthechangesinpolicyexpectationsonnon-FOMCdatesmovethelong/shortportfoliosinthesamedirectionasthepolicysurprisesonFOMCdatesinSection3.Inparticular,aonestandarddeviationexpansionarysurprisechangeinthepolicyexpectationleadstoastatisticallysignificant9basispointsdecreaseinthelong/shortportfolio.Thisresultisconsistentwithourintuition.TheMPEstrategyislong(short)stocksthatperformpoorly(well)whenthereisanexpansionarypolicysurprise.Thus,anexpansionarychangeinpolicyexpectationsleadstolowerreturnstothelong/shortstrategy.Finally,ifourMPEindexpurelycapturesthemonetarypolicyexposure,changesinexpectedfuturepolicyratesshouldlargelyabsorbtheeffectofemploymentandCPInewsbecausetheresponseofthelong/shortportfoliotothisnewsstemsfromtheportfolio'sexposuretomonetarypolicy.Columns4,5,and6provideevidenceforthispredictionbyusingthechangesinpolicyexpectationsandnewsaboutCPIandemploymentsimultaneously.Aswecanobserve,controllingforthechangeinpolicyexpectationsresultsininsignificantloadingsontheemploymentandCPIsurpriseswhereastheloadingonthechangesinpolicyexpectationsremainsverysimilartotheoneinColumn1.Asweseeinthefifthrow,thedropinthecoefficientsofinflationandemploymentsurprisesisstatisticallysignificantaswell.Thisresultsuggeststhatthelong/shortMPEportfolioreactstoinflationandemploymentnewsmainlybecausethenewsmovestheinvestors'expectationsaboutfuturemonetarypolicy.Therefore,weconcludethatourMPEindextrulycapturestheexposuretomonetarypolicyratherthanadirectexposuretothenews.譯文把錢拿出來(lái):貨幣政策風(fēng)險(xiǎn)溢價(jià)摘要我們根據(jù)樣本公司的特征創(chuàng)建了簡(jiǎn)約的貨幣政策敞口(MPE)指數(shù),以前的研究將其與股票對(duì)貨幣政策的反應(yīng)相關(guān)聯(lián)。我們的指數(shù)成功地記錄了股票對(duì)常規(guī)和非常規(guī)貨幣政策的反應(yīng)。價(jià)格對(duì)擴(kuò)張性貨幣政策反應(yīng)更為積極的股票(高M(jìn)PE股票)的平均回報(bào)率較低。這一結(jié)果與以下觀點(diǎn)相一致:高M(jìn)PE的股票可以對(duì)沖不利的經(jīng)濟(jì)沖擊,美聯(lián)儲(chǔ)對(duì)此采取了擴(kuò)張性的貨幣政策。利用這種效應(yīng)設(shè)計(jì)的多空交易策略可實(shí)現(xiàn)0.77的年夏普比率。關(guān)鍵詞:貨幣政策;資產(chǎn)定價(jià);風(fēng)險(xiǎn)因素引言宏觀經(jīng)濟(jì)學(xué)和金融學(xué)中的大量文獻(xiàn)研究了貨幣政策對(duì)資產(chǎn)價(jià)格的影響。Bernanke和Kuttner(2005)在最近的一項(xiàng)開創(chuàng)性貢獻(xiàn)中指出,聯(lián)邦基金目標(biāo)利率意外下調(diào)25個(gè)基點(diǎn)與廣泛股指上漲約1%有關(guān)??傮w而言,學(xué)術(shù)研究和從業(yè)人員都認(rèn)為貨幣政策對(duì)股票價(jià)格的影響很大,而且具有不同特征的公司的股票價(jià)格對(duì)貨幣政策的反應(yīng)也不同。但是,貨幣政策對(duì)股票風(fēng)險(xiǎn)溢價(jià)橫截面的影響并不大。完全了解。盡管幾類理論模型暗示貨幣政策是股票市場(chǎng)中重要的風(fēng)險(xiǎn)來(lái)源,但它們?cè)谪泿耪叱诤惋L(fēng)險(xiǎn)溢價(jià)之間的關(guān)系預(yù)測(cè)上卻大相徑庭。在本文中,我們基于可觀察的公司特征創(chuàng)建了貨幣政策敞口(MPE)指數(shù),以前的研究將其與股票價(jià)格的貨幣政策敏感性相關(guān)聯(lián)。使用該指數(shù),我們發(fā)現(xiàn),價(jià)格對(duì)擴(kuò)張性貨幣政策反應(yīng)更為積極的股票(高M(jìn)PE股票)的平均收益要低于低MPE股票。此溢價(jià)在經(jīng)濟(jì)上具有重要意義,并且是數(shù)據(jù)的強(qiáng)大功能。旨在利用這種效應(yīng)的多空(低負(fù)高M(jìn)PE)交易策略在1975年至2015年期間實(shí)現(xiàn)了9.12%的年化價(jià)值加權(quán)收益。我們的結(jié)果與以下觀點(diǎn)一致:貨幣政策敞口較高的股票收益較低之所以會(huì)獲得回報(bào),是因?yàn)槊缆?lián)儲(chǔ)(Fed)通過(guò)擴(kuò)張性的貨幣政策來(lái)應(yīng)對(duì)惡劣的經(jīng)濟(jì)沖擊,因此高M(jìn)PE股票可以對(duì)沖這些沖擊。建立MPE指數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)投資信托協(xié)議書(2篇)
- 2024年草船借箭教學(xué)設(shè)計(jì)(53篇)
- 2024年福建省莆田市涵江區(qū)三江口鎮(zhèn)招聘社區(qū)工作者考前自測(cè)高頻考點(diǎn)模擬試題(共500題)含答案
- 2024年福建省《消防員資格證之一級(jí)防火考試》必刷500題標(biāo)準(zhǔn)卷
- 黃金卷3-【贏在中考·黃金八卷】(原卷版)
- 2024屆四川省綿陽(yáng)市高三上學(xué)期第二次診斷性考試(二模)文綜試題
- 2025屆南開中學(xué)初中考生物押題試卷含解析
- 互補(bǔ)發(fā)電系統(tǒng)行業(yè)深度研究報(bào)告
- 2025公司質(zhì)押借款合同范本
- 2024年度天津市公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師綜合檢測(cè)試卷A卷含答案
- 公務(wù)車輛定點(diǎn)加油服務(wù)投標(biāo)文件(技術(shù)方案)
- 《中國(guó)制造業(yè)的崛起》課件
- 中小學(xué)學(xué)校安全管理制度匯編
- DB21∕T 3240-2020 芹菜農(nóng)藥安全使用生產(chǎn)技術(shù)規(guī)程
- 2024年全國(guó)《考評(píng)員》專業(yè)技能鑒定考試題庫(kù)與答案
- 廣州滬教牛津版七年級(jí)英語(yǔ)上冊(cè)期中試卷(含答案)
- 2025版國(guó)家開放大學(xué)法律事務(wù)專科《民法學(xué)(1)》期末考試總題庫(kù)
- 幼兒心理健康的教育課件
- DB43T 1167-2016 高純(SiO ≥99.997%)石英砂 規(guī)范
- 《環(huán)境保護(hù)產(chǎn)品技術(shù)要求 工業(yè)廢氣吸附凈化裝置》HJT 386-2007
- 化工過(guò)程安全管理導(dǎo)則學(xué)習(xí)考試題及答案
評(píng)論
0/150
提交評(píng)論