2023屆湖南省常德市芷蘭實驗學校高三下學期第二次質量測試數(shù)學試題_第1頁
2023屆湖南省常德市芷蘭實驗學校高三下學期第二次質量測試數(shù)學試題_第2頁
2023屆湖南省常德市芷蘭實驗學校高三下學期第二次質量測試數(shù)學試題_第3頁
2023屆湖南省常德市芷蘭實驗學校高三下學期第二次質量測試數(shù)學試題_第4頁
2023屆湖南省常德市芷蘭實驗學校高三下學期第二次質量測試數(shù)學試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆湖南省常德市芷蘭實驗學校高三下學期第二次質量測試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中含的項的系數(shù)為()A. B.60 C.70 D.802.已知的垂心為,且是的中點,則()A.14 B.12 C.10 D.83.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.54.據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據(jù)該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%5.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直6.三棱柱中,底面邊長和側棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.7.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.58.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.9.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.110.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.11.設為虛數(shù)單位,為復數(shù),若為實數(shù),則()A. B. C. D.12.已知,,,則,,的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.14.已知關于的方程在區(qū)間上恰有兩個解,則實數(shù)的取值范圍是________15.的展開式中二項式系數(shù)最大的項的系數(shù)為_________(用數(shù)字作答).16.已知,在方向上的投影為,則與的夾角為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.18.(12分)的內角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.19.(12分)已知.(Ⅰ)當時,解不等式;(Ⅱ)若的最小值為1,求的最小值.20.(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.組號分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0021.(12分)已知橢圓的離心率為,直線過橢圓的右焦點,過的直線交橢圓于兩點(均異于左、右頂點).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點.若直線交于點,直線交于點,試判斷是否為定值,若是,求出定值;若不是,說明理由.22.(10分)已知函數(shù),(1)求函數(shù)的單調區(qū)間;(2)當時,判斷函數(shù),()有幾個零點,并證明你的結論;(3)設函數(shù),若函數(shù)在為增函數(shù),求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,由二項式的通項,可得解【詳解】由題意,展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,所以的展開式中含的項的系數(shù)為.故選:B【點睛】本題考查了二項式系數(shù)的求解,考查了學生綜合分析,數(shù)學運算的能力,屬于基礎題.2、A【解析】

由垂心的性質,得到,可轉化,又即得解.【詳解】因為為的垂心,所以,所以,而,所以,因為是的中點,所以.故選:A【點睛】本題考查了利用向量的線性運算和向量的數(shù)量積的運算率,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.3、C【解析】

利用復數(shù)代數(shù)形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復數(shù)代數(shù)形式的乘法運算,是基礎題.4、D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統(tǒng)計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.5、D【解析】

根據(jù)異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質知,過只有唯一平面與平行,故正確.C.根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.6、B【解析】

設,,,根據(jù)向量線性運算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解,關鍵是能夠通過向量的線性運算、數(shù)量積運算將問題轉化為向量夾角的求解問題.7、A【解析】

根據(jù)幾何體分析正視圖和側視圖的形狀,結合題干中的數(shù)據(jù)可計算出結果.【詳解】由三視圖的性質和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.8、C【解析】

模擬執(zhí)行程序框圖,即可容易求得結果.【詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【點睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉化思想,涉及判斷條件的選擇,屬基礎題.9、A【解析】

設點,則點,,利用向量數(shù)量積的坐標運算可得,利用二次函數(shù)的性質可得最值.【詳解】解:設點,則點,,,,當時,取最小值,最小值為.故選:A.【點睛】本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎題.10、B【解析】

根據(jù)函數(shù)的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【點睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應用,屬于基礎題.11、B【解析】

可設,將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【詳解】設,則.由題意有,所以.故選:B【點睛】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎題12、D【解析】

構造函數(shù),利用導數(shù)求得的單調區(qū)間,由此判斷出的大小關系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數(shù)求函數(shù)的單調區(qū)間,考查化歸與轉化的數(shù)學思想方法,考查對數(shù)式比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.14、【解析】

先換元,令,將原方程轉化為,利用參變分離法轉化為研究兩函數(shù)的圖像交點,觀察圖像,即可求出.【詳解】因為關于的方程在區(qū)間上恰有兩個解,令,所以方程在上只有一解,即有,直線與在的圖像有一個交點,由圖可知,實數(shù)的取值范圍是,但是當時,還有一個根,所以此時共有3個根.綜上實數(shù)的取值范圍是.【點睛】本題主要考查學生運用轉化與化歸思想的能力,方程有解問題轉化成兩函數(shù)的圖像有交點問題,是常見的轉化方式.15、5670【解析】

根據(jù)二項式展開的通項,可得二項式系數(shù)的最大項,可求得其系數(shù).【詳解】二項展開式一共有項,所以由二項式系數(shù)的性質可知二項式系數(shù)最大的項為第5項,系數(shù)為.故答案為:5670【點睛】本題考查了二項式定理展開式的應用,由通項公式求二項式系數(shù),屬于中檔題.16、【解析】

由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大小.【詳解】在方向上的投影為,即夾角為.故答案為:.【點睛】本題考查求向量的夾角,掌握向量投影的定義是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個復合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),,,∴函數(shù)在閉區(qū)間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數(shù)的周期性和單調性.18、(1);(2).【解析】

(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)當時,令,作出的圖像,結合圖像即可求解;(Ⅱ)結合絕對值三角不等式可得,再由“1”的妙用可拼湊為,結合基本不等式即可求解;【詳解】(Ⅰ)令,作出它們的大致圖像如下:由或(舍),得點橫坐標為2,由對稱性知,點橫坐標為﹣2,因此不等式的解集為.(Ⅱ)..取等號的條件為,即,聯(lián)立得因此的最小值為.【點睛】本題考查絕對值不等式、基本不等式,屬于中檔題20、(1),,,;(2)【解析】

(1)根據(jù)第1組的頻數(shù)和頻率求出,根據(jù)頻數(shù)、頻率、的關系分別求出,進而求出不低于70分的概率;(2)由(1)得,根據(jù)分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責人的抽取方法,得出第4組抽取的學生中至少有一名是負責人的抽法數(shù),由古典概型概率公式,即可求解.【詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:(2)因為第3、4、5組共有50名學生,所以利用分層抽樣在50名學生中抽取5名學生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設第3組的3位同學為、,第4組的2位同學為、,第5組的1位同學為,則從五位同學中抽兩位同學有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學、至少有一位同學是負責人有7種抽法,故所求的概率為.【點睛】本題考查補全頻率分布表、古典概型的概率,屬于基礎題.21、(1)(2)定值為0.【解析】

(1)根據(jù)直線方程求焦點坐標,即得c,再根據(jù)離心率得,(2)先設直線方程以及各點坐標,化簡,再聯(lián)立直線方程與橢圓方程,利用韋達定理代入化簡得結果.【詳解】(1)因為直線過橢圓的右焦點,所以,因為離心率為,所以,(2),設直線,則因此由得,所以,因此即【點睛】本題考查橢圓方程以及直線與橢圓位置關系,考查綜合分析求解能力,屬中檔題.22、(1)單調增區(qū)間,單調減區(qū)間為,;(2)有2個零點,證明見解析;(3)【解析】

對函數(shù)求導,利用導數(shù)的正負判斷函數(shù)的單調區(qū)間即可;函數(shù)有2個零點.根據(jù)函數(shù)的零點存在性定理即可證明;記函數(shù),求導后利用單調性求得,由零點存在性定理及單調性知存在唯一的,使,求得為分段函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論