福建省閩侯第六中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
福建省閩侯第六中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
福建省閩侯第六中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
福建省閩侯第六中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
福建省閩侯第六中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

福建省閩侯第六中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知過點的直線與圓相切,且與直線垂直,則()A. B.C. D.2.對任意實數(shù)k,直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.與k有關(guān)3.已知拋物線:的焦點為F,準(zhǔn)線l上有兩點A,B,若為等腰直角三角形且面積為8,則拋物線C的標(biāo)準(zhǔn)方程是()A. B.C.或 D.4.已知直線經(jīng)過拋物線的焦點,且與該拋物線交于,兩點,若滿足,則直線的方程為()A. B.C. D.5.過點(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=06.直線在y軸上的截距是A. B.C. D.7.在中,角A,B,C所對的邊分別為a,b,c,已知,則的面積為()A. B.C. D.8.方程有兩個不同的解,則實數(shù)k的取值范圍為()A. B.C. D.9.為迎接2022年冬奧會,某校在體育冰球課上加強冰球射門訓(xùn)練,現(xiàn)從甲、乙兩隊中各選出5名球員,并分別將他們依次編號為1,2,3,4,5進(jìn)行射門訓(xùn)練,他們的進(jìn)球次數(shù)如折線圖所示,則在這次訓(xùn)練中以下說法正確的是()A.甲隊球員進(jìn)球的中位數(shù)比乙隊大 B.乙隊球員進(jìn)球的中位數(shù)比甲隊大C.乙隊球員進(jìn)球水平比甲隊穩(wěn)定 D.甲隊球員進(jìn)球數(shù)的極差比乙隊小10.已知雙曲線的一個焦點到它的一條漸近線的距離為,則()A.5 B.25C. D.11.已知拋物線C:,焦點為F,點到在拋物線上,則()A.3 B.2C. D.12.直線的傾斜角為()A.60° B.30°C.120° D.150°二、填空題:本題共4小題,每小題5分,共20分。13.已知.若在定義域內(nèi)單調(diào)遞增,則實數(shù)的取值范圍為______.14.已知直線和平面,且;①若異面,則至少有一個與相交;②若垂直,則至少有一個與垂直;對于以上命題中,所有正確的序號是___________.15.已知數(shù)列的各項均為正數(shù),記為的前n項和,從下面①②③中選取兩個作為條件,證明另外一個成立①數(shù)列是等差數(shù)列:②數(shù)列是等差數(shù)列;③注:若選擇不同的組合分別解答,則按第一個解答計分16.達(dá)?芬奇認(rèn)為:和音樂一樣,數(shù)學(xué)和幾何“包含了宇宙的一切”,從年輕時起,他就本能地把這些主題運用在作品中,布達(dá)佩斯的伊帕姆維澤蒂博物館收藏的達(dá)?芬奇方磚,在正六邊形上畫了具有視覺效果的正方體圖案(如圖1),把三片這樣的達(dá)?芬奇方磚形成圖2的組合,這個組合表達(dá)了圖3所示的幾何體.若圖3中每個正方體的邊長為1,則點到直線的距離是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點,點在拋物線上.(1)求;(2)過點向軸作垂線,垂足為,過點的直線與拋物線交于兩點,證明:為直角三角形(為坐標(biāo)原點).18.(12分)已知是橢圓的兩個焦點,P為C上一點,O為坐標(biāo)原點(1)若為等邊三角形,求C的離心率;(2)如果存在點P,使得,且的面積等于16,求b的值和a的取值范圍.19.(12分)已知分別是橢圓的左、右焦點,點是橢圓上的一點,且的面積為1.(1)求橢圓的短軸長;(2)過原點的直線與橢圓交于兩點,點是橢圓上的一點,若為等邊三角形,求的取值范圍.20.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)試討論函數(shù)的單調(diào)性.21.(12分)大學(xué)生王蕾利用暑假參加社會實踐,對機(jī)械銷售公司月份至月份銷售某種機(jī)械配件的銷售量及銷售單價進(jìn)行了調(diào)查,銷售單價和銷售量之間的一組數(shù)據(jù)如表所示:月份銷售單價(元)銷售量(件)(1)根據(jù)至月份數(shù)據(jù),求出關(guān)于的回歸直線方程;(2)若剩下的月份的數(shù)據(jù)為檢驗數(shù)據(jù),并規(guī)定由回歸直線方程得到的估計數(shù)據(jù)與檢驗數(shù)據(jù)的誤差不超過元,則認(rèn)為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?(注:,,參考數(shù)據(jù):,)22.(10分)已知函數(shù)(為自然對數(shù)的底數(shù)).(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有且僅有2個零點,求實數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】首先由點的坐標(biāo)滿足圓的方程來確定點在圓上,然后求出過點的圓的切線方程,最后由兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系求解.【詳解】由題知,圓的圓心,半徑.因為,所以點在圓上,所以過點的圓的切線與直線垂直,設(shè)切線的斜率,則有,即,解得.因為直線與切線垂直,所以,解得.故選:B.2、A【解析】判斷直線恒過定點,可知定點在圓內(nèi),即可判斷直線與圓的位置關(guān)系.【詳解】由可知,即該圓的圓心坐標(biāo)為,半徑為,由可知,則該直線恒過定點,將點代入圓的方程可得,則點在圓內(nèi),則直線與圓的位置關(guān)系為相交.故選:.3、C【解析】分或()兩種情況討論,由面積列方程即可求解【詳解】由題意得,當(dāng)時,,解得;當(dāng)或時,,解得,所以拋物線的方程是或.故選:C.4、C【解析】求出拋物線的焦點,設(shè)出直線方程,代入拋物線方程,運用韋達(dá)定理和向量坐標(biāo)表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點,設(shè)直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點睛】本題考查直線和拋物線的位置關(guān)系,主要考查韋達(dá)定理和向量共線的坐標(biāo)表示,考查運算能力,屬于中檔題.5、A【解析】設(shè)出直線方程,利用待定系數(shù)法得到結(jié)果.【詳解】設(shè)與直線平行的直線方程為,將點代入直線方程可得,解得則所求直線方程為.故A正確【點睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設(shè)為6、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.7、A【解析】由余弦定理計算求得角,根據(jù)三角形面積公式計算即可得出結(jié)果.【詳解】由余弦定理得,,∴,∴,故選:A8、C【解析】轉(zhuǎn)化為圓心在原點半徑為1的上半圓和表示恒過定點的直線始終有兩個公共點,結(jié)合圖形可得答案.【詳解】令,平方得表示圓心在原點半徑為1的上半圓,表示恒過定點的直線,方程有兩個不同的解即半圓和直線要始終有兩個公共點,如圖圓心到直線的距離為,解得,當(dāng)直線經(jīng)過時由得,當(dāng)直線經(jīng)過時由得,所以實數(shù)k的取值范圍為.故選:C.9、C【解析】根據(jù)折線圖,求出甲乙中位數(shù)、平均數(shù)及方差、極差,即可判斷各選項的正誤.【詳解】由題圖,甲隊數(shù)據(jù)從小到大排序為,乙隊數(shù)據(jù)從小到大排序為,所以甲乙兩隊的平均數(shù)都為5,甲、乙進(jìn)球中位數(shù)相同都為5,A、B錯誤;甲隊方差為,乙隊方差為,即,故乙隊球員進(jìn)球水平比甲隊穩(wěn)定,C正確.甲隊極差為6,乙隊極差為4,故甲隊極差比乙隊大,D錯誤.故選:C10、B【解析】由漸近線方程得到,焦點坐標(biāo)為,漸近線方程為:,利用點到直線距離公式即得解【詳解】由題意,雙曲線故焦點坐標(biāo)為,漸近線方程為:焦點到它的一條漸近線的距離為:解得:故選:B11、D【解析】利用拋物線的定義求解.【詳解】因為點在拋物線上,,解得,利用拋物線的定義知故選:D12、C【解析】求出斜率,根據(jù)斜率與傾斜角的關(guān)系,即可求解.【詳解】解:,即,直線的斜率為,即直線的傾斜角為120°.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將問題轉(zhuǎn)化為在上恒成立,再分離參數(shù)轉(zhuǎn)化為求函數(shù)的最值問題即可得到實數(shù)的取值范圍【詳解】因為,所以;因為在內(nèi)單調(diào)遞增,所以在上恒成立,即在上恒成立,因為,所以.故答案為:14、①②【解析】假設(shè)與都不相交得到,得到①正確,若不垂直,上取一點,作交于,得到,得到②正確,得到答案.【詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點,作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.15、證明過程見解析【解析】選①②作條件證明③時,可設(shè)出,結(jié)合的關(guān)系求出,利用是等差數(shù)列可證;也可分別設(shè)出公差,寫出各自的通項公式后利用兩者的關(guān)系,對照系數(shù),得到等量關(guān)系,進(jìn)行證明.選①③作條件證明②時,根據(jù)等差數(shù)列的求和公式表示出,結(jié)合等差數(shù)列定義可證;選②③作條件證明①時,設(shè)出,結(jié)合的關(guān)系求出,根據(jù)可求,然后可證是等差數(shù)列;也可利用前兩項的差求出公差,然后求出通項公式,進(jìn)而證明出結(jié)論.【詳解】選①②作條件證明③:[方法一]:設(shè),則,當(dāng)時,;當(dāng)時,;因為也是等差數(shù)列,所以,解得;所以,,故.[方法二]:設(shè)等差數(shù)列的公差為d,等差數(shù)列的公差為,則,將代入,化簡得對于恒成立則有,解得.所以選①③作條件證明②:因為,是等差數(shù)列,所以公差,所以,即,因為,所以是等差數(shù)列.選②③作條件證明①:[方法一]:設(shè),則,當(dāng)時,;當(dāng)時,;因為,所以,解得或;當(dāng)時,,當(dāng)時,滿足等差數(shù)列的定義,此時為等差數(shù)列;當(dāng)時,,不合題意,舍去.綜上可知為等差數(shù)列.[方法二]【最優(yōu)解】:因為,所以,,因為也為等差數(shù)列,所以公差,所以,故,當(dāng)時,,當(dāng)時,滿足上式,故的通項公式為,所以,,符合題意.【整體點評】這類題型在解答題后可證是等差數(shù)列;法二:利用是等差數(shù)列即前兩項的差求出公差,然后求出的通項公式,利用,求出的通項公式,進(jìn)而證明出結(jié)論.16、【解析】根據(jù)題意,求得△的三條邊長,在三角形中求邊邊上的高線即可.【詳解】根據(jù)題意,延長交于點,連接,如下所示:在△中,容易知:;同理,,滿足,設(shè)點到直線的距離為,由等面積法可知:,解得,即點到直線的距離是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)點代入即可得出拋物線方程,根據(jù)拋物線的定義即可求得.(2)由題,設(shè)直線的方程為:,與拋物線方程聯(lián)立,可得,利用韋達(dá)定理證得即可得出結(jié)論.【小問1詳解】點在拋物線上.,則,所以.【小問2詳解】證明:由題,設(shè)直線的方程為:,點聯(lián)立方程,消得:,由韋達(dá)定理有,由,所以,所以,所以,所以為直角三角形.18、(1);(2),a的取值范圍為.【解析】(1)先連結(jié),由為等邊三角形,得到,,;再由橢圓定義,即可求出結(jié)果;(2)先由題意得到,滿足條件的點存在,當(dāng)且僅當(dāng),,,根據(jù)三個式子聯(lián)立,結(jié)合題中條件,即可求出結(jié)果.【詳解】(1)連結(jié),由等邊三角形可知:在中,,,,于是,故橢圓C的離心率為;(2)由題意可知,滿足條件的點存在,當(dāng)且僅當(dāng),,,即①②③由②③以及得,又由①知,故;由②③得,所以,從而,故;當(dāng),時,存在滿足條件的點.故,a的取值范圍為.【點睛】本題主要考查求橢圓的離心率,以及橢圓中存在定點滿足題中條件的問題,熟記橢圓的簡單性質(zhì)即可求解,考查計算能力,屬于中檔試題.19、(1)2(2)【解析】(1)根據(jù)題意表示出的面積,即可求得結(jié)果;(2)分類討論直線斜率情況,然后根據(jù)是等邊三角形,得到,聯(lián)立直線和橢圓方程,用點的坐標(biāo)表示上述關(guān)系式,化簡即可得答案.【小問1詳解】因為,所以,又因為,所以,,所以,則橢圓的短軸長為2.【小問2詳解】若為等邊三角形,應(yīng)有,即.當(dāng)直線的斜率不存在時,直線的方程為,且,此時若為等邊三角形,則點應(yīng)為長軸頂點,且,即.當(dāng)直線的斜率為0時,直線的方程為,且,此時若為等邊二角形,則點應(yīng)為短軸頂點,此時,不為等邊三角形.當(dāng)直線的斜率存在且不為0時,設(shè)其方程為,則直線的方程為.由得,同理.因為,所以,解得.因為,所以,則,即.綜上,的取值范圍是.20、(1)(2)詳見解析.【解析】(1)由,求導(dǎo),得到,寫出切線方程;(2)求導(dǎo),再分,,討論求解.【小問1詳解】解:因為,所以,則,所以,所以曲線在點處的切線方程是,即;【小問2詳解】因為,所以,當(dāng)時,成立,則在上遞減;當(dāng)時,令,得,當(dāng)時,,當(dāng)時,,所以在上遞減,在上遞增;綜上:當(dāng)時,在上遞減;當(dāng)時,在上遞減,在上遞增;21、(1)(2)回歸直線方程是理想的【解析】(1)根據(jù)表格數(shù)據(jù)求得,利用最小二乘法可求得回歸直線方程;(2)令回歸直線中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論