




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一、解答題1.如圖,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,,,,現(xiàn)將四邊形經(jīng)過平移后得到四邊形,點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)為.(1)請直接寫點(diǎn)、、的坐標(biāo);(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點(diǎn),連接、,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,請說明理由.2.如圖,,直線與、分別交于點(diǎn)、,點(diǎn)在直線上,過點(diǎn)作,垂足為點(diǎn).(1)如圖1,求證:;(2)若點(diǎn)在線段上(不與、、重合),連接,和的平分線交于點(diǎn)請在圖2中補(bǔ)全圖形,猜想并證明與的數(shù)量關(guān)系;3.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當(dāng)射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.4.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).5.已知:ABCD.點(diǎn)E在CD上,點(diǎn)F,H在AB上,點(diǎn)G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數(shù)量關(guān)系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.6.已知,AB∥DE,點(diǎn)C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點(diǎn)C作CF⊥BC交ED的延長線于點(diǎn)F,探究∠ABC和∠F之間的數(shù)量關(guān)系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點(diǎn)G,連接GB并延長至點(diǎn)H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.7.對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“夢幻數(shù)”,將一個“夢幻數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三數(shù),把這三個新三位數(shù)的和與111的商記為K(n),例如,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為,,所以.(1)計算:和;(2)若x是“夢幻數(shù)”,說明:等于x的各數(shù)位上的數(shù)字之和;(3)若x,y都是“夢幻數(shù)”,且,猜想:________,并說明你猜想的正確性.8.規(guī)定:求若千個相同的有理數(shù)(均不等于)的除法運(yùn)算叫做除方,如等,類比有理數(shù)的乘方,我們把記作,讀作“的圈次方”,記作,讀作“的圈次方”,一般地,把記作,讀作“”的圈次方.(初步探究)(1)直接寫出計算結(jié)果:;;(2)關(guān)于除方,下列說法錯誤的是()A.任何非零數(shù)的圈次方都等于B.對于任何正整數(shù)C.D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù)(深入思考)我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?(3)試一試:,依照前面的算式,將,的運(yùn)算結(jié)果直接寫成冪的形式是,;(4)想一想:將一個非零有理數(shù)的圓次方寫成冪的形式是:;(5)算一算:.9.閱讀型綜合題對于實數(shù)我們定義一種新運(yùn)算(其中均為非零常數(shù)),等式右邊是通常的四則運(yùn)算,由這種運(yùn)算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.10.我們已經(jīng)學(xué)習(xí)了“乘方”運(yùn)算,下面介紹一種新運(yùn)算,即“對數(shù)”運(yùn)算.定義:如果(a>0,a≠1,N>0),那么b叫做以a為底N的對數(shù),記作.例如:因為,所以;因為,所以.根據(jù)“對數(shù)”運(yùn)算的定義,回答下列問題:(1)填空:,.(2)如果,求m的值.(3)對于“對數(shù)”運(yùn)算,小明同學(xué)認(rèn)為有“(a>0,a≠1,M>0,N>0)”,他的說法正確嗎?如果正確,請給出證明過程;如果不正確,請說明理由,并加以改正.11.對非負(fù)實數(shù)“四舍五入”到各位的值記為.即:當(dāng)為非負(fù)整數(shù)時,如果,則;反之,當(dāng)為非負(fù)整數(shù)時,如果,則.例如:,.(1)計算:;;(2)①求滿足的實數(shù)的取值范圍,②求滿足的所有非負(fù)實數(shù)的值;(3)若關(guān)于的方程有正整數(shù)解,求非負(fù)實數(shù)的取值范圍.12.若一個四位數(shù)t的前兩位數(shù)字相同且各位數(shù)字均不為0,則稱這個數(shù)為“前介數(shù)”;若把這個數(shù)的個位數(shù)字放到前三位數(shù)字組成的數(shù)的前面組成一個新的四位數(shù),則稱這個新的四位數(shù)為“中介數(shù)”;記一個“前介數(shù)”t與它的“中介數(shù)”的差為P(t).例如,5536前兩位數(shù)字相同,所以5536為“前介數(shù)”;則6553就為它的“中介數(shù)”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個“前介數(shù)”t,P(t)一定能被9整除.(3)若一個千位數(shù)字為2的“前介數(shù)”t能被6整除,它的“中介數(shù)”能被2整除,請求出滿足條件的P(t)的最大值.13.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為(1,0)、(-2,0),現(xiàn)同時將點(diǎn)分別向上平移2個單位,再向左平移1個單位,分別得到點(diǎn)的對應(yīng)點(diǎn),連接、、.(1)若在軸上存在點(diǎn),連接,使S△ABM=S□ABDC,求出點(diǎn)的坐標(biāo);(2)若點(diǎn)在線段上運(yùn)動,連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運(yùn)動,請直接寫出的數(shù)量關(guān)系.14.如圖1,點(diǎn)在直線、之間,且.(1)求證:;(2)若點(diǎn)是直線上的一點(diǎn),且,平分交直線于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線、外一點(diǎn),且滿足,,與交于點(diǎn).已知,且,則的度數(shù)為______(請直接寫出答案,用含的式子表示).15.在平面直角坐標(biāo)系中,已知長方形,點(diǎn),.(1)如圖,有一動點(diǎn)在第二象限的角平分線上,若,求的度數(shù);(2)若把長方形向上平移,得到長方形.①在運(yùn)動過程中,求的面積與的面積之間的數(shù)量關(guān)系;②若,求的面積與的面積之比.16.某超市投入31500元購進(jìn)A、B兩種飲料共800箱,飲料的成本與銷售價如下表:(單位:元/箱)類別成本價銷售價A4264B3652(1)該超市購進(jìn)A、B兩種飲料各多少箱?(2)全部售完800箱飲料共盈利多少元?(3)若超市計劃盈利16200元,且A類飲料售價不變,則B類飲料銷售價至少應(yīng)定為每箱多少元?17.(了解概念)在平面直角坐標(biāo)系中,若,式子的值就叫做線段的“勾股距”,記作.同時,我們把兩邊的“勾股距”之和等于第三邊的“勾股距”的三角形叫做“等距三角形”.(理解運(yùn)用)在平面直角坐標(biāo)系中,.(1)線段的“勾股距”;(2)若點(diǎn)在第三象限,且,求并判斷是否為“等距三角形”﹔(拓展提升)(3)若點(diǎn)在軸上,是“等距三角形”,請直接寫出的取值范圍.18.在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,現(xiàn)將線段先向上平移3個單位,再向右平移1個單位,得到線段,連接,.(1)如圖1,求點(diǎn),的坐標(biāo)及四邊形的面積;圖1(2)如圖1,在軸上是否存在點(diǎn),連接,,使?若存在這樣的點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,試說明理由;(3)如圖2,在直線上是否存在點(diǎn),連接,使?若存在這樣的點(diǎn),直接寫出點(diǎn)的坐標(biāo);若不存在,試說明理由.圖2(4)在坐標(biāo)平面內(nèi)是否存在點(diǎn),使?若存在這樣的點(diǎn),直接寫出點(diǎn)的坐標(biāo)的規(guī)律;若不存在,請說明理由.19.?dāng)?shù)學(xué)活動課上,小新和小葵各自拿著不同的長方形紙片在做數(shù)學(xué)問題探究.(1)小新經(jīng)過測量和計算得到長方形紙片的長寬之比為3:2,面積為30,請求出該長方形紙片的長和寬;(2)小葵在長方形內(nèi)畫出邊長為a,b的兩個正方形(如圖所示),其中小正方形的一條邊在大正方形的一條邊上,她經(jīng)過測量和計算得到長方形紙片的周長為50,陰影部分兩個長方形的周長之和為30,由此她判斷大正方形的面積為100,間小葵的判斷正確嗎?請說明理由.20.題目:滿足方程組的x與y的值的和是2,求k的值.按照常規(guī)方法,順著題目思路解關(guān)于x,y的二元一次方程組,分別求出xy的值(含有字母k),再由x+y=2,構(gòu)造關(guān)于k的方程求解,從而得出k值.(1)某數(shù)學(xué)興趣小組對本題的解法又進(jìn)行了探究利用整體思想,對于方程組中每個方程變形得到“x+y”這個整體,或者對方程組的兩個方程進(jìn)行加減變形得到“x+y”整體值,從而求出k值請你運(yùn)用這種整體思想的方法,完成題目的解答過程.(2)小勇同學(xué)的解答是:觀察方程①,令3x=k,5y=1解得y=,3x+y=2,∴x=∴k=3×=把x=,y=代入方程②得k=﹣所以k的值為或﹣.請診斷分析并評價“小勇同學(xué)的解答”.21.兩個兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個四位數(shù).已知前一個四位數(shù)比后一個四位數(shù)大990.若設(shè)較大的兩位數(shù)為x,較小的兩位數(shù)為y,回答下列問題:(1)可得到下列哪一個方程組?A.B.C.D.(2)解所確定的方程組,求這兩個兩位數(shù).22.我國傳統(tǒng)數(shù)學(xué)名著《九章算術(shù)》記載:“今有牛五、羊二,直金十九兩;牛二、羊五,直金十六兩.問牛、羊各直金幾何?”譯文:“假設(shè)有5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子.問每頭牛、每只羊分別值銀子多少兩?”根據(jù)以上譯文,提出以下兩個問題:(1)求每頭牛、每只羊各值多少兩銀子?(2)若某商人準(zhǔn)備用20兩銀子買牛和羊(要求既有牛也有羊,且銀兩須全部用完),請問商人有幾種購買方法?列出所有的可能.23.新定義,若關(guān)于,的二元一次方程組①的解是,關(guān)于,的二元一次方程組②的解是,且滿足,,則稱方程組②的解是方程組①的模糊解.關(guān)于,的二元一次方程組的解是方程組的模糊解,則的取值范圍是________.24.我市某包裝生產(chǎn)企業(yè)承接了一批上海世博會的禮品盒制作業(yè)務(wù),為了確保質(zhì)量,該企業(yè)進(jìn)行試生產(chǎn).他們購得規(guī)格是的標(biāo)準(zhǔn)板材作為原材料,每張標(biāo)準(zhǔn)板材再按照裁法一或裁法二裁下A型與B型兩種板材.如圖甲,(單位:)(1)列出方程(組),求出圖甲中a與b的值;(2)在試生產(chǎn)階段,若將30張標(biāo)準(zhǔn)板材用裁法一裁剪,4張標(biāo)準(zhǔn)板材用裁法二裁剪,再將得到的A型與B型板材做側(cè)面和底面,做成圖乙的豎式與橫式兩種禮品盒.①兩種裁法共產(chǎn)生A型板材________張,B型板材_______張;②已知①中的A型板材和B型板材恰好做成豎式有蓋禮品盒x個,橫式無蓋禮品盒的y個,求x、y的值.25.某小區(qū)準(zhǔn)備新建個停車位,以解決小區(qū)停車難的問題.已知新建個地上停車位和個地下停車位共需萬元:新建個地上停車位和個地下停車位共需萬元,(1)該小區(qū)新建個地上停車位和個地下停車位各需多少萬元?(2)若該小區(qū)新建車位的投資金額超過萬元而不超過萬元,問共有幾種建造方案?(3)對(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.26.如圖,在平面直角坐標(biāo)系中,軸,軸,且,動點(diǎn)從點(diǎn)出發(fā),以每秒的速度,沿路線向點(diǎn)運(yùn)動;動點(diǎn)從點(diǎn)出發(fā),以每秒的速度,沿路線向點(diǎn)運(yùn)動.若兩點(diǎn)同時出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)時,運(yùn)動停止.(Ⅰ)直接寫出三個點(diǎn)的坐標(biāo);(Ⅱ)設(shè)兩點(diǎn)運(yùn)動的時間為秒,用含的式子表示運(yùn)動過程中三角形的面積;(Ⅲ)當(dāng)三角形的面積的范圍小于16時,求運(yùn)動的時間的范圍.27.材料1:我們把形如(、、為常數(shù))的方程叫二元一次方程.若、、為整數(shù),則稱二元一次方程為整系數(shù)方程.若是,的最大公約數(shù)的整倍數(shù),則方程有整數(shù)解.例如方程都有整數(shù)解;反過來也成立.方程都沒有整數(shù)解,因為6,3的最大公約數(shù)是3,而10不是3的整倍數(shù);4,2的最大公約數(shù)是2,而1不是2的整倍數(shù).材料2:求方程的正整數(shù)解.解:由已知得:……①設(shè)(為整數(shù)),則……②把②代入①得:.所以方程組的解為,根據(jù)題意得:.解不等式組得0<<.所以的整數(shù)解是1,2,3.所以方程的正整數(shù)解是:,,.根據(jù)以上材料回答下列問題:(1)下列方程中:①,②,③,④,⑤,⑥.沒有整數(shù)解的方程是(填方程前面的編號);(2)仿照上面的方法,求方程的正整數(shù)解;(3)若要把一根長30的鋼絲截成2長和3長兩種規(guī)格的鋼絲(兩種規(guī)格都要有),問怎樣截才不浪費(fèi)材料?你有幾種不同的截法?(直接寫出截法,不要求解題過程)28.閱讀材料:如果x是一個有理數(shù),我們把不超過x的最大整數(shù)記作.例如,,,,那么,,其中.例如,,,.請你解決下列問題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.29.中國傳統(tǒng)節(jié)日“端午節(jié)”期間,某商場開展了“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌的粽子進(jìn)行了打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分別為多少元?(2)在商場讓利促銷活動期間,某敬老院準(zhǔn)備購買甲、乙兩種品牌粽子共40盒,總費(fèi)用不超過2300元,問敬老院最多可購買多少盒乙品牌粽子?30.如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限內(nèi)一點(diǎn),CB⊥y軸交y軸負(fù)半軸于B(0,b),且|a﹣3|+(b+4)2=0,S四邊形AOBC=16.(1)求點(diǎn)C的坐標(biāo).(2)如圖2,設(shè)D為線段OB上一動點(diǎn),當(dāng)AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點(diǎn)P,求∠APD的度數(shù);(點(diǎn)E在x軸的正半軸).(3)如圖3,當(dāng)點(diǎn)D在線段OB上運(yùn)動時,作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線交于N點(diǎn),則點(diǎn)D在運(yùn)動過程中,∠N的大小是否會發(fā)生變化?若不變化,求出其值;若變化,請說明理由.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點(diǎn)的坐標(biāo)即可;(2)由平移的性質(zhì)可知,重疊部分為平行四邊形,且底邊長為3,高為2,即可求出面積;(3)設(shè)點(diǎn)的坐標(biāo)為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個單位,向上平移一個單位;∵,,,∴;(2)如圖,延長交x軸于點(diǎn)E,過點(diǎn)做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設(shè)點(diǎn)的坐標(biāo)為,∵,,∴,∴點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查了平移的性質(zhì),平行四邊形的性質(zhì),坐標(biāo)與圖形,以及求陰影部分的面積,解題的關(guān)鍵是熟練掌握平移的性質(zhì)進(jìn)行解題.2.(1)證明見解析;(2)補(bǔ)圖見解析;當(dāng)點(diǎn)在上時,;當(dāng)點(diǎn)在上時,.【分析】(1)過點(diǎn)作,根據(jù)平行線的性質(zhì)即可求解;(2)分兩種情況:當(dāng)點(diǎn)在上,當(dāng)點(diǎn)在上,再過點(diǎn)作即可求解.【詳解】(1)證明:如圖,過點(diǎn)作,∴,∵,∴.∴.∵,∴,∴.(2)補(bǔ)全圖形如圖2、圖3,猜想:或.證明:過點(diǎn)作.∴.∵,∴∴,∴.∵平分,∴.如圖3,當(dāng)點(diǎn)在上時,∵平分,∴,∵,∴,即.如圖2,當(dāng)點(diǎn)在上時,∵平分,∴.∴.即.【點(diǎn)睛】本題考查了平行線的基本性質(zhì)、角平分線的基本性質(zhì)及角的運(yùn)算,解題的關(guān)鍵是準(zhǔn)確作出平行線,找出角與角之間的數(shù)量關(guān)系.3.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時,②當(dāng)15<t≤30時,③當(dāng)30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問題.4.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.5.(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線平行”得解;(2)過點(diǎn)作,過點(diǎn)作,根據(jù)平行線的性質(zhì)及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點(diǎn)作,過點(diǎn)作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),熟記平行線的判定與性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.6.(1)證明見解析;(2);(3).【分析】(1)過點(diǎn)作,先根據(jù)平行線的性質(zhì)可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質(zhì)可得,由此即可得證;(2)過點(diǎn)作,同(1)的方法,先根據(jù)平行線的性質(zhì)得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結(jié)論;(3)過點(diǎn)作,延長至點(diǎn),先根據(jù)平行線的性質(zhì)可得,,從而可得,再根據(jù)角平分線的定義、結(jié)合(2)的結(jié)論可得,然后根據(jù)角的和差、對頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點(diǎn)作,,,,,即,,;(2)如圖,過點(diǎn)作,,,,,即,,,,,;(3)如圖,過點(diǎn)作,延長至點(diǎn),,,,,平分,平分,,由(2)可知,,,又,.【點(diǎn)睛】本題考查了平行線的性質(zhì)、對頂角相等、角平分線的定義等知識點(diǎn),熟練掌握平行線的性質(zhì)是解題關(guān)鍵.7.(1);(2)見解析;(3)【分析】(1)根據(jù)的定義,可以直接計算得出;(2)設(shè),得到新的三個數(shù)分別是:,這三個新三位數(shù)的和為,可以得到:;(3)根據(jù)(2)中的結(jié)論,猜想:.【詳解】解:(1)已知,所以新的三個數(shù)分別是:,這三個新三位數(shù)的和為,;同樣,所以新的三個數(shù)分別是:,這三個新三位數(shù)的和為,.(2)設(shè),得到新的三個數(shù)分別是:,這三個新三位數(shù)的和為,可得到:,即等于x的各數(shù)位上的數(shù)字之和.(3)設(shè),由(2)的結(jié)論可以得到:,,,根據(jù)三位數(shù)的特點(diǎn),可知必然有:,,故答案是:.【點(diǎn)睛】此題考查了多位數(shù)的數(shù)字特征,每個數(shù)字是10以內(nèi)的自然數(shù)且不為0,解題的關(guān)鍵是:結(jié)合新定義,可以計算出問題的解,注意把握每個數(shù)字都會出現(xiàn)一次的特點(diǎn),區(qū)別數(shù)字與多為數(shù)的不同.8.(1),;(2)C;(3),;(4);(5)-5.【分析】概念學(xué)習(xí):(1)分別按公式進(jìn)行計算即可;(2)根據(jù)定義依次判定即可;深入思考:(3)由冪的乘方和除方的定義進(jìn)行變形,即可得到答案;(4)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),結(jié)果第一個數(shù)不變?yōu)閍,第二個數(shù)及后面的數(shù)變?yōu)?,則;(5)將第二問的規(guī)律代入計算,注意運(yùn)算順序.【詳解】解:(1);;故答案為:,;(2)A、任何非零數(shù)的圈2次方都等于1;所以選項A正確;B、因為多少個1相除都是1,所以對于任何正整數(shù)n,1?都等于1;
所以選項B正確;C、,,則;故選項C錯誤;D、負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù),故D正確;故選:;(3)根據(jù)題意,,由上述可知:;(4)根據(jù)題意,由(3)可知,;故答案為:(5).【點(diǎn)睛】本題考查了有理數(shù)的混合運(yùn)算,也是一個新定義的理解與運(yùn)用;一方面考查了有理數(shù)的乘除法及乘方運(yùn)算,另一方面也考查了學(xué)生的閱讀理解能力;注意:負(fù)數(shù)的奇數(shù)次方為負(fù)數(shù),負(fù)數(shù)的偶數(shù)次方為正數(shù),同時也要注意分?jǐn)?shù)的乘方要加括號,對新定義,其實就是多個數(shù)的除法運(yùn)算,要注意運(yùn)算順序.9.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點(diǎn)睛】本題考查的知識點(diǎn)是實數(shù)的運(yùn)算,理解新定義是解此題的關(guān)鍵.10.(1)1,4;(2)m=10;(3)不正確,改正見解析.【解析】試題分析:(1)根據(jù)新定義由61=6、34=81可得log66=1,log381=4;(2)根據(jù)定義知m﹣2=23,解之可得;(3)設(shè)ax=M,ay=N,則logaM=x、logaN=y,根據(jù)ax?ay=ax+y知ax+y=M?N,繼而得logaMN=x+y,據(jù)此即可得證.試題解析:解:(1)∵61=6,34=81,∴l(xiāng)og66=1,log381=4.故答案為:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正確,設(shè)ax=M,ay=N,則logaM=x,logaN=y(a>0,a≠1,M、N均為正數(shù)).∵ax?ay=,∴=M?N,∴l(xiāng)ogaMN=x+y,即logaMN=logaM+logaN.點(diǎn)睛:本題考查了有理數(shù)和整式的混合運(yùn)算,解題的關(guān)鍵是明確題意,可以利用新定義進(jìn)行解答問題.11.(1)2,3(2)①②(3)【分析】(1)根據(jù)新定義的運(yùn)算規(guī)則進(jìn)行計算即可;(2)①根據(jù)新定義的運(yùn)算規(guī)則即可求出實數(shù)的取值范圍;②根據(jù)新定義的運(yùn)算規(guī)則和為整數(shù),即可求出所有非負(fù)實數(shù)的值;(3)先解方程求得,再根據(jù)方程的解是正整數(shù)解,即可求出非負(fù)實數(shù)的取值范圍.【詳解】(1)2;3;(2)①∵∴解得;②∵∴解得∵為整數(shù)∴故所有非負(fù)實數(shù)的值有;(3)∵方程的解為正整數(shù)∴或2①當(dāng)時,是方程的增根,舍去②當(dāng)時,.【點(diǎn)睛】本題考查了新定義下的運(yùn)算問題,掌握新定義下的運(yùn)算規(guī)則是解題的關(guān)鍵.12.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據(jù)“前介數(shù)”t與它的“中介數(shù)”的差為P(t)的定義求解即可;(2)設(shè)“前介數(shù)”為且a、b、c均不為0的整數(shù),即1a、b、c,根據(jù)定義得到P(t)=,則P(t)一定能被9整除;(3)設(shè)“前介數(shù)”為,根據(jù)題意得到能被3整除,且b只能取2,4,6,8中的其中一個數(shù);對應(yīng)的“中介數(shù)”是,得到a只能取2,4,6,8中的其中一個數(shù),計算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數(shù)”,其對應(yīng)的“中介數(shù)”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數(shù)”,其對應(yīng)的“中介數(shù)”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設(shè)“前介數(shù)”為且a、b、c均為不為0的整數(shù),即1a、b、c,∴,又對應(yīng)的“中介數(shù)”是,∴P(t)=,∵a、b、c均不為0的整數(shù),∴為整數(shù),∴P(t)一定能被9整除;(3)證明:設(shè)“前介數(shù)”為且即1a、b,a、b均為不為0的整數(shù),∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數(shù),且能被3整除,又1,∴b只能取2,4,6,8中的其中一個數(shù),又對應(yīng)的“中介數(shù)”是,且該“中介數(shù)”能被2整除,∴為偶數(shù),又1,∴a只能取2,4,6,8中的其中一個數(shù),∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時,且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時,能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時,且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點(diǎn)睛】本題考查用新定義解題,根據(jù)新定義,表示出“前介數(shù)”,與其對應(yīng)的“中介數(shù)”是求解本題的關(guān)鍵.本題中運(yùn)用到的分類討論思想是重要一種數(shù)學(xué)解題思想方法.13.(1)(0,4)或(0,-4);(2);(3)答案見解析【解析】(1)先根據(jù)S△ABM=S□ABDC,得出△ABM的高為4,再根據(jù)三角形面積公式得到M點(diǎn)的坐標(biāo);(2)先計算出S梯形OBDC=5,再討論:當(dāng)點(diǎn)P運(yùn)動到點(diǎn)B時,S△POC的最小值=2,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)D時,S△POC的最大值=3,即可判斷S=S△PCD+S△POB的取值范圍的取值范圍;(3)分類討論:當(dāng)點(diǎn)P在BD上,如圖1,作PE∥CD,根據(jù)平行線的性質(zhì)得CD∥PE∥AB,則∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;當(dāng)點(diǎn)P在線段BD的延長線上時,如圖2,同樣有∠DCP=∠EPC,∠BOP=∠EPO,由于∠EPO-∠EPC=∠BOP-∠DCP,于是∠BOP-∠DCP=∠CPO;同理可得當(dāng)點(diǎn)P在線段DB的延長線上時,∠DCP-∠BOP=∠CPO.解:(1)由題意,得C(0,2)∴□ABDC的高為2若S△ABM=S□ABDC,則△ABM的高為4又∵點(diǎn)M是y軸上一點(diǎn)∴點(diǎn)M的坐標(biāo)為(0,4)或(0,-4)(2)∵B(-2,0),O(0,0)∴OB=2由題意,得C(0,2),D(-3,2)∴OC=2,CD=3∴S梯形OBDC=點(diǎn)在線段上運(yùn)動,當(dāng)點(diǎn)運(yùn)動到端點(diǎn)B時,△PCO的面積最小,為當(dāng)點(diǎn)運(yùn)動到端點(diǎn)D時,△PCO的面積最大,為∴S=S△PCD+S△POB=S梯形OBDC-S△PCO=5-S△PCO∴S的最大值為5-2=3,最小值為5-3=2故S的取值范圍是:(3)如圖:當(dāng)點(diǎn)在線段上運(yùn)動時,當(dāng)點(diǎn)在射線上運(yùn)動時,當(dāng)點(diǎn)在射線上運(yùn)動時,點(diǎn)睛:本題主要考查坐標(biāo)與圖形的性質(zhì)及三角形的面積.利用分類討論思想,并構(gòu)造輔助線利用平行線的性質(zhì)推理是解題的關(guān)鍵.14.(1)見解析;(2)10°;(3)【分析】(1)過點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯角相等,得出結(jié)合已知條件,得出即可證明;(2)過點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因為,代入的式子即可求出.【詳解】(1)過點(diǎn)E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點(diǎn)E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯角相等,同位角相等來計算和推導(dǎo)角之間的關(guān)系.15.(1)55°或35°;(2)①;②.【解析】【分析】(1)分兩種情況:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根據(jù)點(diǎn)在第二象限的角平分線上,得出∠POE=45°,對頂角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知條件,得出∠CEO=45°,又根據(jù)∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先設(shè)長方形向上平移個單位長,得到長方形,然后列出和的面積,即可得出兩者的數(shù)量關(guān)系;②首先根據(jù)已知條件判定四邊形是平行四邊形,經(jīng)過等量轉(zhuǎn)化,即可得出和的面積,進(jìn)而得出其面積之比.【詳解】(1)分兩種情況:①令PC交x軸于點(diǎn)E,延長CB至x軸,交于點(diǎn)F,如圖所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵點(diǎn)在第二象限的角平分線上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延長CB,交直線l于點(diǎn)E,由已知得,,∵點(diǎn)在第二象限的角平分線上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案為55°或35°.(2)如圖,①設(shè)長方形向上平移個單位長,得到長方形∴②∵長方形,∴∵,令交于E,則四邊形是平行四邊形,∴∴又∵由①得知,∴∴.【點(diǎn)睛】此題主要考查等量轉(zhuǎn)換和平行四邊形的判定以及性質(zhì),熟練掌握,即可解題.16.(1)購進(jìn)A型飲料450箱,購進(jìn)B型飲料350箱;(2)全部售完800箱飲料共盈利15500元;(3)B類飲料銷售價至少定為每箱54元【分析】(1)設(shè)購進(jìn)A型飲料x箱,購進(jìn)B型飲料y箱,根據(jù)題意列出方程組解答即可;(2)根據(jù)利潤的公式解答即可;(3)設(shè)B類飲料銷售價定為每箱a元,根據(jù)題意列出不等式解答即可.【詳解】解:(1)設(shè)購進(jìn)A型飲料x箱,購進(jìn)B型飲料y箱,根據(jù)題意得解得答:購進(jìn)A型飲料450箱,購進(jìn)B型飲料350箱.(2)(64﹣42)×450+(52﹣36)×350=15500(元)答:全部售完800箱飲料共盈利15500元;(3)設(shè)B類飲料銷售價定為每箱a元,根據(jù)題意得(64﹣42)×450+(a﹣36)×350≥16200解得a≥54答:B類飲料銷售價至少定為每箱54元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是根據(jù)數(shù)量關(guān)系列出方程(方程組、不等式或不等式組).17.(1)5;(2)dAC=11,△ABC不是為“等距三角形”;(3)m≥4【分析】(1)根據(jù)兩點(diǎn)之間的直角距離的定義,結(jié)合O、P兩點(diǎn)的坐標(biāo)即可得出結(jié)論;(2)根據(jù)兩點(diǎn)之間的直角距離的定義,用含x、y的代數(shù)式表示出來d(O,Q)=4,結(jié)合點(diǎn)Q(x,y)在第一象限,即可得出結(jié)論;(3)由點(diǎn)N在直線y=x+3上,設(shè)出點(diǎn)N的坐標(biāo)為(m,m+3),通過尋找d(M,N)的最小值,得出點(diǎn)M(2,-1)到直線y=x+3的直角距離.【詳解】解:(1)由“勾股距”的定義知:dOA=|2-0|+|3-0|=2+3=5,故答案為:5;(2)∵dAB=|4-2|+|2-3|=2+1=3,∴2dAB=6,∵點(diǎn)C在第三象限,∴m<0,n<0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),∵dOC=2dAB,∴-(m+n)=6,即m+n=-6,∴dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,∵5+11≠12,11+12≠5,12+5≠11,∴△ABC不是為“等距三角形”;(3)點(diǎn)C在x軸上時,點(diǎn)C(m,0),則dAC=|2-m|+3,dBC=|4-m|+2,①當(dāng)m<2時,dAC=2-m+3=5-m,dBC=4-m+2=6-m,若△ABC是“等距三角形”,∴5-m+6-m=11-2m=3,解得:m=4(不合題意),又∵5-m+3=8-m≠6-m,②當(dāng)2≤m<4時,dAC=m-2+3=m+1,dBC=4-m+2=6-m,若△ABC是“等距三角形”,則m+1+6-m=7≠3,6-m+3=m+1,解得:m=4(不和題意),③當(dāng)m≥4時,dAC=m+1,dBC=m-2,若△ABC是“等距三角形”,則m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,∴m≥4時,△ABC是“等距三角形”,綜上所述:△ABC是“等距三角形”時,m的取值范圍為:m≥4.【點(diǎn)睛】本題考查坐標(biāo)與圖形的性質(zhì),關(guān)鍵是對“勾股距”和“等距三角形”新概念的理解,運(yùn)用“勾股距”和“等距三角形”解題.18.(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標(biāo)總是4或.或者:點(diǎn)在平行于軸且與軸的距離等于4的兩條直線上;或者:點(diǎn)在直線或直線上【分析】(1)根據(jù)點(diǎn)的平移規(guī)律,即可得到對應(yīng)點(diǎn)坐標(biāo);(2)由,可以得到,即可得到P點(diǎn)坐標(biāo);(3)由,可以得到,結(jié)合點(diǎn)C坐標(biāo),就可以求得點(diǎn)Q坐標(biāo);(4)由,可以AB邊上的高的長度,從而得到點(diǎn)的坐標(biāo)規(guī)律.【詳解】(1)∵點(diǎn),點(diǎn)∴向上平移3個單位,再向右平移1個單位之后對應(yīng)點(diǎn)坐標(biāo)為,點(diǎn)∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設(shè)中,AB邊上的高為h則:∴∴點(diǎn)在直線或直線上【點(diǎn)睛】本題考查直角坐標(biāo)系中點(diǎn)的坐標(biāo)平移規(guī)律,由點(diǎn)到坐標(biāo)軸的距離確定點(diǎn)坐標(biāo)等知識點(diǎn),根據(jù)相關(guān)內(nèi)容解題是關(guān)鍵.19.(1)長為,寬為;(2)正確,理由見解析【分析】(1)設(shè)長為3x,寬為2x,根據(jù)長方形的面積為30列方程,解方程即可;(2)根據(jù)長方形紙片的周長為50,陰影部分兩個長方形的周長之和為30列方程組,解方程組求出a即可得到大正方形的面積.【詳解】解:(1)設(shè)長為3x,寬為2x,則:3x?2x=30,∴x=(負(fù)值舍去),∴3x=,2x=,答:這個長方形紙片的長為,寬為;(2)正確.理由如下:根據(jù)題意得:,解得:,∴大正方形的面積為102=100.【點(diǎn)睛】本題考查了算術(shù)平方根,二元一次方程組,解二元一次方程組的基本思路是消元,把二元方程轉(zhuǎn)化為一元方程是解題的關(guān)鍵.20.(1);(2)“小勇同學(xué)的解答”錯誤,診斷分析和評價見解析【分析】(1)由兩種方法分別得出2=5-5k,求解即可;(2)從二元一次方程的解和二元一次方程組的解的概念進(jìn)行診斷分析,再從創(chuàng)新的角度進(jìn)行評價即可.【詳解】解:(1)方法一:②×2得:4x+6y=6-4k③,由③-①得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=,方法二:由①-②得:x+2y=3k-2③,由②-③得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=;(2)“小勇同學(xué)的解答”錯誤,理由如下:∵令3x=k,5y=1,求出的x、y的值只是方程①的一個解,而方程①有無數(shù)個解,根據(jù)方程組的解的概念,僅有方程①或方程②的某一個解中的x、y求出的k值不一定適合方程組中的另一個方程;只有當(dāng)方程①、②取公共解時,k和x、y之間對應(yīng)的數(shù)量關(guān)系才能成立,這時,求得的k=才是正確答案;另一方面,小勇的解答雖然錯誤,但他的思維給我們有創(chuàng)新的感覺,也讓我們鞏固加深了對方程組解的概念的連接,同時啟發(fā)我們平時在學(xué)習(xí)中,要善于多角度去探索問題,尋求新穎的解題方法.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用、二元一次方程的解、一元一次方程的解法以及整體思想的應(yīng)用等知識;熟練掌握二元一次方程組的解法,由整體思想得出2=5-5k是解題的關(guān)鍵.21.(1)C;(2)39和29【分析】(1)首先設(shè)較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意可得等量關(guān)系:①兩個兩位數(shù)的和為68,②比大990,根據(jù)等量關(guān)系列出方程組;(2)利用加減消元法解方程組即可.【詳解】解:(1)解:設(shè)較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意,得故選:C;(2)化簡得,①+②,得,即.①-②,得,即.所以這兩個數(shù)分別是39和29.【點(diǎn)睛】此題主要考查了由實際問題抽象出二元一次方程組和解二元一次方程組,關(guān)鍵是弄清題目意思,表示出“較小的兩位數(shù)寫在較大的兩位數(shù)的右邊,得到一個四位數(shù)為”,把較小的兩位數(shù)寫在較大的兩位數(shù)的左邊,得到另一個四位數(shù)為.22.(1)每頭牛3兩銀子,每頭羊2兩銀子;(2)共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊【分析】(1)設(shè)每頭牛值x兩銀子,每只羊值y兩銀子,根據(jù)“5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)購買a頭牛,b只羊,利用總價=單價×數(shù)量,即可得出關(guān)于a,b的二元一次方程,結(jié)合a,b均為正整數(shù),即可得出各購買方案.【詳解】解:(1)設(shè)每頭牛x兩銀子,每頭羊y兩銀子,根據(jù)題意,得解得答:每頭牛3兩銀子,每頭羊2兩銀子.(含設(shè))(2)設(shè)該商人購買了a頭牛,b頭羊,根據(jù)題意,得∵a、b均為正整數(shù)∴該方程的解為或或所以共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用、數(shù)學(xué)常識以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)找準(zhǔn)等量關(guān)系,正確列出二元一次方程.23.【分析】根據(jù)已知條件,先求出兩個方程組的解,再根據(jù)“模糊解”的定義列出不等式組,解得m的取值范圍便可.【詳解】解:解方程組得:,解方程組得:,∵關(guān)于,的二元一次方程組的解是方程組的模糊解,因此有:且,化簡得:,即解得:,故答案為.【點(diǎn)睛】本題主要考查了新定義,二元一次方程組的解,解絕對值不等式,考查了學(xué)生的閱讀理解能力、知識的遷移能力以及計算能力,難度適中.正確理解“模糊解”的定義是解題的關(guān)鍵.24.(1)a=60,b=40;(2)①64,38;②x=7,y=12【分析】(1)由圖示利用板材的長列出關(guān)于a、b的二元一次方程組求解;(2)①根據(jù)已知和圖示計算出兩種裁法共產(chǎn)生A型板材和B型板材的張數(shù);②根據(jù)豎式與橫式禮品盒所需要的A、B兩種型號板材的張數(shù)列出關(guān)于x、y的二元一次方程組,然后求解即可.【詳解】解:(1)由題意得:,解得:,答:圖甲中與的值分別為:60、40;(2)①由圖示裁法一產(chǎn)生型板材為:,裁法二產(chǎn)生型板材為:,所以兩種裁法共產(chǎn)生型板材為(張,由圖示裁法一產(chǎn)生型板材為:,裁法二產(chǎn)生型板材為,,所以兩種裁法共產(chǎn)生型板材為(張,故答案為:64,38;②根據(jù)題意豎式有蓋禮品盒的個,橫式無蓋禮品盒的個,則型板材需要個,型板材需要個,所以,解得.【點(diǎn)睛】本題考查的知識點(diǎn)是二元一次方程組的應(yīng)用,關(guān)鍵是根據(jù)已知先列出二元一次方程組求出a、b的值,根據(jù)圖示列出算式以及關(guān)于x、y的二元一次方程組.25.(1)新建一個地上停車位需0.1萬元,新建一個地下停車位需0.5萬元;(2)一共2種建造方案;(3)當(dāng)?shù)厣辖?9個車位地下建21個車位投資最少,金額為14.4萬元.【分析】(1)設(shè)新建一個地上停車位需x萬元,新建一個地下停車位需y萬元,根據(jù)等量關(guān)系可列出方程組,解出即可得出答案.(2)設(shè)新建地上停車位m個,則地下停車位(60-m)個,根據(jù)投資金額超過14萬元而不超過15萬元,可得出不等式組,解出即可得出答案.(3)將m=38和m=39分別求得投資金額,然后比較大小即可得到答案.【詳解】解:(1)設(shè)新建一個地上停車位需萬元,新建一個地下停車位需萬元,由題意得:,解得,故新建一個地上停車位需萬元,新建一個地下停車位需萬元.(2)設(shè)新建個地上停車位,由題意得:,解得,因為為整數(shù),所以或,對應(yīng)的或,故一共種建造方案.(3)當(dāng)時,投資(萬元),當(dāng)時,投資(萬元),故當(dāng)?shù)厣辖▊€車位地下建個車位投資最少,金額為萬元.【點(diǎn)睛】本題考查了一元一次不等式組及二元一次方程組的應(yīng)用,解答本題的關(guān)鍵是仔細(xì)審題,將實際問題轉(zhuǎn)化為數(shù)學(xué)方程或不等式的思想進(jìn)行求解,有一定難度.26.(Ⅰ);(Ⅱ)當(dāng)時,三角形的面積為;當(dāng)時,三角形的面積為;(Ⅲ)或.【分析】(Ⅰ)先求出的長,再根據(jù)的長即可得;(Ⅱ)先分別求出點(diǎn)運(yùn)動到點(diǎn)所需時間、點(diǎn)運(yùn)動到點(diǎn)所需時間,從而可得,再分和兩種情況,分別利用三角形的面積公式、梯形的面積公式即可得;(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,分和兩種情況,分別建立不等式,解不等式即可得.【詳解】解:(Ⅰ)軸,,,軸,,;(Ⅱ)∵點(diǎn)運(yùn)動的路徑長為,所用時間為7秒;點(diǎn)運(yùn)動的路徑長為,所用時間為秒,∴根據(jù)其中一點(diǎn)到達(dá)終點(diǎn)時運(yùn)動停止可知,運(yùn)動時間的取值范圍為,點(diǎn)運(yùn)動到點(diǎn)所用時間為4秒,點(diǎn)運(yùn)動到點(diǎn)所用時間為,因此,分以下兩種情況:①如圖,當(dāng)時,,則三角形的面積為;②當(dāng)時,如圖,過點(diǎn)作,交延長線于點(diǎn),,,則三角形的面積為,,,綜上,當(dāng)時,三角形的面積為;當(dāng)時,三角形的面積為;(Ⅲ)①當(dāng)時,則,解得,則此時的取值范圍為;②當(dāng)時,則,解得,則此時的取值范圍為,綜上,當(dāng)三角形的面積的范圍小于16時,或.【點(diǎn)睛】本題考查了坐標(biāo)與圖形、三角形的面積公式、一元一次不等式的應(yīng)用等知識點(diǎn),較難的是題(Ⅱ),正確分兩種情況討論是解題關(guān)鍵.27.(1)①⑥;(2),,;(3)有四種不同的截法不浪費(fèi)材料,分別為2長的鋼絲12根,3長的鋼絲2根;或2長的鋼絲9根,3長的鋼絲4根;或2長的鋼絲6根,3長的鋼絲6根;或2長的鋼絲3根,3長的鋼絲8根【分析】(1)依據(jù)題中給出的判斷方法進(jìn)行判斷,先找出最大公約數(shù),然后再看能否整除c,從而來判斷是否有整數(shù)解;(2)依據(jù)材料2的解題過程,即可求得結(jié)果;(3)根據(jù)題意,設(shè)2長的鋼絲為根,3長的鋼絲為根(為正整數(shù)).則可得關(guān)于x,y的二元一次方程,利用材料2的求解方法,求得此方程的整數(shù)解,即可得出結(jié)論.【詳解】解:(1)①,因為3,9的最大公約數(shù)是3,而11不是3的整倍數(shù),所以此方程沒有整數(shù)解;②,因為15,5的最大公約數(shù)是5,而70是5的整倍數(shù),所以此方程有整數(shù)解;③,因為6,3的最大公約數(shù)是3,而111是3的整倍數(shù),所以此方程有整數(shù)解;④,因為27,9的最大公約數(shù)是9,而99是9的整倍數(shù),所以此方程有整數(shù)解;⑤,因為91,26的最大公約數(shù)是13,而169是13的整倍數(shù),所以此方程有整數(shù)解;⑥,因為22,121的最大公約數(shù)是11,而324不是11的整倍數(shù),所以此方程沒有整數(shù)解;故答案為:①⑥.(2)由已知得:.①設(shè)(為整數(shù)),則.②把②代入①得:.所以方程組的解為.根據(jù)題意得:,解不等式組得:<<.所以的整數(shù)解是-2,-1,0.故原方程所有的正整數(shù)解為:,,.(3)設(shè)2長的鋼絲為根,3長的鋼絲為根(為正整數(shù)).根據(jù)題意得:.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45428-2025法庭科學(xué)偽造人像多光譜檢驗
- 2024年調(diào)酒師實踐技能題型及試題及答案
- 2025建筑工程施工合同風(fēng)險識別與應(yīng)對策略研究
- 四川省南充市順慶區(qū)南充高級中學(xué)2024-2025學(xué)年高一下學(xué)期4月月考語文試題
- 2025企業(yè)簡化的租賃合同范本
- 2025室內(nèi)裝修施工合同
- 2025年關(guān)于以設(shè)備為租賃物的融資租賃合同效力分析
- 法治助力鄉(xiāng)村振興的路徑與實踐
- 2025年農(nóng)產(chǎn)品貿(mào)易合作合同協(xié)議
- 開封文化藝術(shù)職業(yè)學(xué)院《大數(shù)據(jù)分析與處理》2023-2024學(xué)年第二學(xué)期期末試卷
- 奶制品風(fēng)味物質(zhì)合成與改良技術(shù)
- 2024年6月四川省高中學(xué)業(yè)水平考試生物試卷真題(含答案詳解)
- 2023-2024學(xué)年遼寧省沈陽市南昌中學(xué)八年級(下)月考英語試卷(4月份)
- 國服中山裝的設(shè)計特點(diǎn)及含義
- TB10001-2016 鐵路路基設(shè)計規(guī)范
- 19S406建筑排水管道安裝-塑料管道
- KA-T 20.1-2024 非煤礦山建設(shè)項目安全設(shè)施設(shè)計編寫提綱 第1部分:金屬非金屬地下礦山建設(shè)項目安全設(shè)施設(shè)計編寫提綱
- 綠色生活實踐
- (2024年)硫化氫安全培訓(xùn)課件
- 《聚焦超聲治療》課件
- 2023-2024學(xué)年高一下學(xué)期第一次月考(湘教版2019)地理試題(解析版)
評論
0/150
提交評論