![2024屆江蘇省南通市包場中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁](http://file4.renrendoc.com/view2/M00/2A/32/wKhkFmZiM_6AJId3AAIX3MNBDZg025.jpg)
![2024屆江蘇省南通市包場中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁](http://file4.renrendoc.com/view2/M00/2A/32/wKhkFmZiM_6AJId3AAIX3MNBDZg0252.jpg)
![2024屆江蘇省南通市包場中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁](http://file4.renrendoc.com/view2/M00/2A/32/wKhkFmZiM_6AJId3AAIX3MNBDZg0253.jpg)
![2024屆江蘇省南通市包場中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁](http://file4.renrendoc.com/view2/M00/2A/32/wKhkFmZiM_6AJId3AAIX3MNBDZg0254.jpg)
![2024屆江蘇省南通市包場中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁](http://file4.renrendoc.com/view2/M00/2A/32/wKhkFmZiM_6AJId3AAIX3MNBDZg0255.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆江蘇省南通市包場中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知過點的直線的傾斜角為,則直線的方程為()A. B. C. D.2.甲、乙、丙三人隨意坐下,乙不坐中間的概率為()A. B. C. D.3.在中,,,,點P是內(nèi)(包括邊界)的一動點,且(),則的最大值為()A.6 B. C. D.64.在正四棱柱,,則異面直線與所成角的余弦值為A. B. C. D.5.已知向量,若,則()A.1 B. C.2 D.36.同時拋擲兩枚骰子,朝上的點數(shù)之和為奇數(shù)的概率是()A. B. C. D.7.在長方體中,,,,則異面直線與所成角的大小為()A. B. C. D.或8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.若一個數(shù)列的前三項依次為6,18,54,則此數(shù)列的一個通項公式為()A. B. C. D.10.若,滿足不等式組,則的最小值為()A.-5 B.-4 C.-3 D.-2二、填空題:本大題共6小題,每小題5分,共30分。11.若,則實數(shù)的值為_______.12.已知等差數(shù)列的前三項為,則此數(shù)列的通項公式為______13.已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,且a1+b1=514.已知函數(shù)是定義域為的偶函數(shù),當時,,若關于的方程有且僅有6個不同實數(shù)根,則實數(shù)的取值范圍為______.15.設點是角終邊上一點,若,則=____.16.在直角梯形.中,,分別為的中點,以為圓心,為半徑的圓交于,點在上運動(如圖).若,其中,則的最大值是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.若(1)化簡;(2)求函數(shù)的單調(diào)遞增區(qū)間.18.東莞市攝影協(xié)會準備在2019年10月舉辦主題為“慶祖國70華誕——我們都是追夢人”攝影圖片展.通過平常人的鏡頭記錄國強民富的幸福生活,向祖國母親的生日獻禮,攝影協(xié)會收到了來自社會各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如圖:(1)求頻率分布直方圖中的值,并根據(jù)頻率分布直方圖,求這100位攝影者年齡的樣本平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);(2)為了展示不同年齡作者眼中的祖國形象,攝影協(xié)會按照分層抽樣的方法,計劃從這100件照片中抽出20個最佳作品,并邀請相應作者參加“講述照片背后的故事”座談會.①在答題卡上的統(tǒng)計表中填出每組相應抽取的人數(shù):年齡人數(shù)②若從年齡在的作者中選出2人把這些圖片和故事整理成冊,求這2人至少有一人的年齡在的概率.19.向量,,,函數(shù).(1)求的表達式,并在直角坐標中畫出函數(shù)在區(qū)間上的草圖;(2)若方程在上有兩個根、,求的取值范圍及的值.20.已知,其中,,.(1)求的單調(diào)遞增區(qū)間;(2)在中,角,,所對的邊分別為,,,,,且向量與共線,求邊長和的值.21.同時拋擲兩枚骰子,并記下二者向上的點數(shù),求:二者點數(shù)相同的概率;兩數(shù)之積為奇數(shù)的概率;二者的數(shù)字之和不超過5的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由直線的傾斜角求得直線的斜率,再由直線的點斜式方程求解.【詳解】∵直線的傾斜角為,∵直線的斜率,又直線過點,由直線方程的點斜式可得直線的方程為,即.故選:B.【點睛】本題考查直線的點斜式方程,考查直線的傾斜角與斜率的關系,是基礎題.2、A【解析】甲、乙、丙三人隨意坐下有種結(jié)果,乙坐中間則有,乙不坐中間有種情況,概率為,故選A.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.3、B【解析】
利用余弦定理和勾股定理可證得;取,作,根據(jù)平面向量平行四邊形法則可知點軌跡為線段,由此可確定,利用勾股定理可求得結(jié)果.【詳解】由余弦定理得:如圖,取,作,交于在內(nèi)(包含邊界)點軌跡為線段當與重合時,最大,即故選:【點睛】本題考查向量模長最值的求解問題,涉及到余弦定理解三角形的應用;解題關鍵是能夠根據(jù)平面向量線性運算確定動點軌跡,根據(jù)軌跡確定最值點.4、A【解析】
作出兩異面直線所成的角,然后由余弦定理求解.【詳解】在正四棱柱中,則異面直線與所成角為或其補角,在中,,,.故選A.【點睛】本題考查異面直線所成的角,解題關鍵是根據(jù)定義作出異面直線所成的角,然后通過解三角形求之.5、B【解析】
可求出,根據(jù)即可得出,進行數(shù)量積的坐標運算即可求出x.【詳解】;∵;∴;解得.故選B.【點睛】本題考查向量垂直的充要條件,向量坐標的減法和數(shù)量積運算,屬于基礎題.6、A【解析】
分別求出基本事件的總數(shù)和點數(shù)之和為奇數(shù)的事件總數(shù),再由古典概型的概率計算公式求解.【詳解】同時拋擲兩枚骰子,總共有種情況,朝上的點數(shù)之和為奇數(shù)的情況有種,則所求概率為.故選:A.【點睛】本題考查古典概型概率的求法,屬于基礎題.7、C【解析】
平移CD到AB,則即為異面直線與所成的角,在直角三角形中即可求解.【詳解】連接AC1,CD//AB,可知即為異面直線與所成的角,在中,,故選.【點睛】本題考查異面直線所成的角.常用方法:1、平移直線到相交;2、向量法.8、C【解析】
通過三視圖可以判斷這一個是半個圓柱與半個圓錐形成的組合體,利用圓柱和圓錐的體積公式可以求出這個組合體的體積.【詳解】該幾何體為半個圓柱與半個圓錐形成的組合體,故,故選C.【點睛】本題考查了利用三視圖求組合體圖形的體積,考查了運算能力和空間想象能力.9、C【解析】
,,,可以歸納出數(shù)列的通項公式.【詳解】依題意,,,,所以此數(shù)列的一個通項公式為,故選:C.【點睛】本題考查了數(shù)列的通項公式,主要考查歸納法得到數(shù)列的通項公式,屬于基礎題.10、A【解析】
畫出不等式組表示的平面區(qū)域,平移目標函數(shù),找出最優(yōu)解,求出的最小值.【詳解】畫出,滿足不等式組表示的平面區(qū)域,如圖所示平移目標函數(shù)知,當目標函數(shù)過點時,取得最小值,由得,即點坐標為∴的最小值為,故選A.【點睛】本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由得,代入方程即可求解.【詳解】,.,,,即,故填.【點睛】本題主要考查了反三角函數(shù)的定義及運算性質(zhì),屬于中檔題.12、【解析】由題意可得,解得.
∴等差數(shù)列的前三項為-1,1,1.
則1.
故答案為.13、1【解析】
根據(jù)等差數(shù)列的通項公式把abn轉(zhuǎn)化到a1+(bn-1)【詳解】S=[=[=na1=4n+n(n-1)故答案為:12【點睛】本題主要考查等差數(shù)列通項公式和前n項和的應用,利用分組求和法是解決本題的關鍵.14、0<a≤或a.【解析】
運用偶函數(shù)的性質(zhì),作出函數(shù)f(x)的圖象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),結(jié)合圖象,分析有且僅有6個不同實數(shù)根的a的情況,即可得到a的范圍.【詳解】函數(shù)是定義域為的偶函數(shù),作出函數(shù)f(x)的圖象如圖:關于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),當0≤x≤2時,f(x)∈[0,],x>2時,f(x)∈(,).由,則f(x)有4個實根,由題意,只要f(x)=a有2個實根,則由圖象可得當0<a≤時,f(x)=a有2個實根,當a時,f(x)=a有2個實根.綜上可得:0<a≤或a.故答案為0<a≤或a..【點睛】本題考查函數(shù)的奇偶性和單調(diào)性的運用,考查方程和函數(shù)的轉(zhuǎn)化思想,運用數(shù)形結(jié)合的思想方法是解決的常用方法.15、【解析】
根據(jù)任意角三角函數(shù)的定義,列方程求出m的值.【詳解】P(m,)是角終邊上的一點,∴r=;又,∴=,解得m=,,.故答案為.【點睛】本題考查了任意角三角函數(shù)的定義與應用問題,屬于基礎題.16、【解析】
建立直角坐標系,設,根據(jù),表示出,結(jié)合三角函數(shù)相關知識即可求得最大值.【詳解】建立如圖所示的平面直角坐標系:,分別為的中點,,以為圓心,為半徑的圓交于,點在上運動,設,,即,,所以,兩式相加:,即,要取得最大值,即當時,故答案為:【點睛】此題考查平面向量線性運算,處理平面幾何相關問題,涉及三角換元,轉(zhuǎn)化為求解三角函數(shù)的最值問題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用利用誘導公式化簡得解析式,可的結(jié)果.(2)利用余弦函數(shù)的單調(diào)性求得函數(shù)的單調(diào)遞增區(qū)間.【詳解】(1).(2)令,,的單調(diào)遞增區(qū)間為.【點睛】本題考查利用誘導公式化簡求值、求余弦函數(shù)的單調(diào)區(qū)間,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,屬于基礎題.18、(1),平均數(shù)為,中位數(shù)為(2)①見解析②【解析】
(1)由頻率分布直方圖各個小矩形的面積之和為1可得,用區(qū)間中點值代替可計算均值,中位數(shù)把頻率分布直方圖中小矩形面積等分.(2)①分層抽樣,是按比例抽取人數(shù);②年齡在有2人,在有4人,設在的是,,在的是,可用列舉法列舉出選2人的所有可能,然后可計算出概率.【詳解】(1)由頻率分布直方圖各個小矩形的面積之和為1,得在頻率分布直方圖中,這100位參賽者年齡的樣本平均數(shù)為:設中位數(shù)為,由,解得.(2)①每組應各抽取人數(shù)如下表:年齡人數(shù)12485②根據(jù)分層抽樣的原理,年齡在有2人,在有4人,設在的是,,在的是,列舉選出2人的所有可能如下:,共15種情況.設“這2人至少有一人的年齡在區(qū)間”為事件,則包含:共9種情況則【點睛】本題考查頻率分布直方圖,考查樣本數(shù)據(jù)特征、古典概型,屬于基礎題型.19、(1),見解析(2)或,或.【解析】
(1)根據(jù)數(shù)量積的坐標表示,二倍角公式,輔助角公式即可求出的表達式,再根據(jù)五點作圖法或者平移法即可作出其在上的草圖;(2)依題意知,函數(shù)在上的圖象與直線有兩個交點,根據(jù)數(shù)形結(jié)合,即可求出的取值范圍及的值.【詳解】(1)依題知,.將正弦函數(shù)的圖象向右平移個單位,再將各點的橫坐標變?yōu)樵瓉淼模纯傻玫降膱D象,截取的部分即得,如圖所示:(2)依題可知,函數(shù)在上的圖象與直線有兩個交點,根據(jù)數(shù)形結(jié)合,可知,或,當時,兩交點關于直線對稱,所以;當時,兩交點關于直線對稱,所以.故或,或.【點睛】本題主要考查數(shù)量積的坐標表示,二倍角公式,輔助角公式的應用,正弦型函數(shù)圖象的畫法,以及方程的根與兩函數(shù)圖象交點的個數(shù)關系的應用,意在考查學生的數(shù)學運算能力,數(shù)形結(jié)合能力,以及轉(zhuǎn)化能力,屬于中檔題.20、(1);(2).【解析】試題分析:(1)化簡得,代入,求得增區(qū)間為;(2)由求得,余弦定理得.因為向量與共線,所以,由正弦定理得,解得.試題解析:(1)由題意知,,在上單調(diào)遞增,令,得,的單調(diào)遞增區(qū)間.(2),又,即.,由余弦定理得.因為向量與共線,所以,由正弦定理得.考點:三角函數(shù)恒等變形、解三角形.21、(1)(2)(3)【解析】
把兩個骰子分別記為紅色和黑色,則問題中含有基本事件個數(shù),記事件A表示“二者點數(shù)相同”,利用列舉法求出事件A中包含6個基本事件,由此能求出二者點數(shù)相同的概率.記事件B表示“兩數(shù)之積為奇數(shù)”,利用列舉法求出事件B中含有9個基本事件,由此能求出兩數(shù)之積為奇數(shù)的概率.記事件C表示“二者的數(shù)字之和不超過5”,利用列舉法求出事件C中包含的基本事件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人短期借款法律合同范本2025
- 萬畝良田聯(lián)產(chǎn)承包合同新政策
- 個人廠房租賃合同典范
- 產(chǎn)權(quán)清楚車位買賣合同細則
- 上海市房地產(chǎn)委托代理合同范本
- 食品調(diào)料采購合同
- 個人貸款借款合同模板
- 勞動合同管理制度7
- 個人借款合同書及還款細則
- 個人住宅購房合同條款及樣本
- 廣東省廣州市黃埔區(qū)2023-2024學年八年級上學期期末生物試卷+
- 北京市豐臺區(qū)市級名校2024屆數(shù)學高一第二學期期末檢測模擬試題含解析
- 設立項目管理公司組建方案
- 薪酬戰(zhàn)略與實踐
- 答案之書(解答之書)-電子版精選答案
- 中國古代文學史 馬工程課件(上)01總緒論
- GB/T 22085.1-2008電子束及激光焊接接頭缺欠質(zhì)量分級指南第1部分:鋼
- 上海中心大廈-介紹 課件
- 非酒精性脂肪性肝病防治指南解讀課件
- 地理微格教學課件
- 合成氨操作規(guī)程
評論
0/150
提交評論