2025屆云南省峨山縣一中高一數(shù)學第二學期期末教學質(zhì)量檢測試題含解析_第1頁
2025屆云南省峨山縣一中高一數(shù)學第二學期期末教學質(zhì)量檢測試題含解析_第2頁
2025屆云南省峨山縣一中高一數(shù)學第二學期期末教學質(zhì)量檢測試題含解析_第3頁
2025屆云南省峨山縣一中高一數(shù)學第二學期期末教學質(zhì)量檢測試題含解析_第4頁
2025屆云南省峨山縣一中高一數(shù)學第二學期期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省峨山縣一中高一數(shù)學第二學期期末教學質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件。為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=()A.9 B.10 C.12 D.132.已知圓心在軸上的圓經(jīng)過,兩點,則的方程為()A. B.C. D.3.一個長方體共一頂點的三條棱長分別是,這個長方體它的八個頂點都在同一個球面上,這個球的表面積是()A.12π B.18π C.36π D.6π4.設的內(nèi)角所對的邊分別為,且,已知的面積等于,,則的值為()A. B. C. D.5..若且,直線不通過()A.第一象限 B.第二象限 C.第三象限 D.第四象限,6.已知兩個變量x,y之間具有線性相關關系,試驗測得(x,y)的四組值分別為(1,2),(2,4),(3,5),(4,7),則y與x之間的回歸直線方程為()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.27.等比數(shù)列中,,,則公比()A.1 B.2 C.3 D.48.設函數(shù)是定義在上的奇函數(shù),當時,,則()A.-4 B. C. D.9.兩數(shù)與的等比中項是()A.1 B.-1 C.±1 D.10.等差數(shù)列的前項和為,若,且,則()A.10 B.7 C.12 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.和2的等差中項的值是______.12.在中,,,則的值為________13.已知向量,則與的夾角是_________.14.若直線與圓相切,則________.15.已知為等差數(shù)列,,前n項和取得最大值時n的值為___________.16.在矩形中,,現(xiàn)將矩形沿對角線折起,則所得三棱錐外接球的體積是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.假設關于某設備的使用年限x和支出的維修費y(萬元)有如下表的統(tǒng)計資料(1)畫出數(shù)據(jù)的散點圖,并判斷y與x是否呈線性相關關系(2)若y與x呈線性相關關系,求線性回歸方程的回歸系數(shù),(3)估計使用年限為10年時,維修費用是多少?參考公式及相關數(shù)據(jù):18.如圖所示,在直角坐標系中,點,,點P,Q在單位圓上,以x軸正半軸為始邊,以射線為終邊的角為,以射線為終邊的角為,滿足.(1)若,求(2)當點P在單位圓上運動時,求函數(shù)的解析式,并求的最大值.19.已知,為常數(shù),且,,.(I)若方程有唯一實數(shù)根,求函數(shù)的解析式.(II)當時,求函數(shù)在區(qū)間上的最大值與最小值.(III)當時,不等式恒成立,求實數(shù)的取值范圍.20.已知數(shù)列的前項和.(1)求數(shù)列通項公式;(2)令,求數(shù)列的前n項和.21.某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.(1)求圖中x的值;(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析::∵甲、乙、丙三個車間生產(chǎn)的產(chǎn)品件數(shù)分別是120,80,60,∴甲、乙、丙三個車間生產(chǎn)的產(chǎn)品數(shù)量的比依次為6:4:3,丙車間生產(chǎn)產(chǎn)品所占的比例,因為樣本中丙車間生產(chǎn)產(chǎn)品有3件,占總產(chǎn)品的,所以樣本容量n=3÷=1.考點:分層抽樣方法2、A【解析】

由圓心在軸上設出圓心坐標,設出圓的方程,將,兩點坐標代入,即可求得圓心坐標和半徑,進而得圓的方程.【詳解】因為圓心在軸上,設圓心坐標為,半徑為設圓的方程為因為圓經(jīng)過,兩點代入可得解方程求得所以圓C的方程為故選:A【點睛】本題考查了圓的方程求法,關鍵是求出圓心和半徑,屬于基礎題.3、A【解析】

先求長方體的對角線的長度,就是球的直徑,然后求出它的表面積.【詳解】長方體的體對角線的長是,所以球的半徑是:,所以該球的表面積是,故選A.【點睛】該題考查的是有關長方體的外接球的表面積問題,在解題的過程中,首先要明確長方體的外接球的球心應在長方體的中心處,即長方體的體對角線是其外接球的直徑,從而求得結果.4、D【解析】

由正弦定理化簡已知,結合,可求,利用同角三角函數(shù)基本關系式可求,進而利用三角形的面積公式即可解得的值.【詳解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面積,解得.故選:.【點睛】本題主要考查了正弦定理,同角三角函數(shù)基本關系式,三角形的面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.5、D【解析】

因為且,所以,,又直線可化為,斜率為,在軸截距為,因此直線過一二三象限,不過第四象限.故選:D.6、C【解析】試題分析:設樣本中線點為,其中,即樣本中心點為,因為回歸直線必過樣本中心點,將代入四個選項只有B,C成立,畫出散點圖分析可知兩個變量x,y之間正相關,故C正確.考點:回歸直線方程7、B【解析】

將與用首項和公比表示出來,解方程組即可.【詳解】因為,且,故:,且,解得:,即,故選:B.【點睛】本題考查求解等比數(shù)列的基本量,屬基礎題.8、A【解析】

由奇函數(shù)的性質(zhì)可得:即可求出【詳解】因為是定義在上的奇函數(shù),所以又因為當時,,所以,所以,選A.【點睛】本題主要考查了函數(shù)的性質(zhì)中的奇偶性。其中奇函數(shù)主要有以下幾點性質(zhì):1、圖形關于原點對稱。2、在定義域上滿足。3、若定義域包含0,一定有。9、C【解析】試題分析:設兩數(shù)的等比中項為,等比中項為-1或1考點:等比中項10、C【解析】

由等差數(shù)列的前項和公式解得,由,得,由此能求出的值。【詳解】解:差數(shù)列的前n項和為,,,解得,解得,故選:C。【點睛】本題考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)等差中項性質(zhì)求解即可【詳解】設等差中項為,則,解得故答案為:【點睛】本題考查等差中項的求解,屬于基礎題12、【解析】

由,得到,由三角形的內(nèi)角和,求出,再由正弦定理求出的值.【詳解】因為,,所以,所以,在中,由正弦定理得,所以.【點睛】本題考查正弦定理解三角形,屬于簡單題.13、【解析】

利用向量的數(shù)量積直接求出向量的夾角即可.【詳解】由題知,,因為,所以與的夾角為.故答案為:.【點睛】本題考查了利用向量的數(shù)量積求解向量的夾角,屬于基礎題.14、1【解析】

利用圓心到直線的距離等于半徑列方程,解方程求得的值.【詳解】由于直線和圓相切,所以圓心到直線的距離,即,由于,所以.故答案為:【點睛】本小題主要考查直線和圓的位置關系,考查點到直線的距離公式,屬于基礎題.15、20【解析】

先由條件求出,算出,然后利用二次函數(shù)的知識求出即可【詳解】設的公差為,由題意得即,①即,②由①②聯(lián)立得所以故當時,取得最大值400故答案為:20【點睛】等差數(shù)列的是關于的二次函數(shù),但要注意只能取正整數(shù).16、【解析】

取的中點,連接,三棱錐外接球的半徑再計算體積.【詳解】如圖,取的中點,連接.由題意可得,則所得三棱錐外接球的半徑,其體積為.故答案為【點睛】本題考查了三棱錐的外切球體積,計算是解題的關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2),;(3)12.38萬元【解析】

(1)在坐標系中畫出5個離散的點;(2)利用最小二乘法求出,再利用回歸直線過散點圖的中心,求出;(3)將代入(2)中的回歸直線方程,求得.【詳解】(1)散點圖如下:所以從散點圖年,它們具有線性相關關系.(2),,于是有,.(3)回歸直線方程是當時,(萬元),即估計使用年限為10年時,維修費用是萬元.【點睛】本題考查散點圖的作法、最小二乘法求回歸直線方程及利用回歸直線預報當時,的值,考查數(shù)據(jù)處理能力.18、(1)(2),最大值.【解析】

(1)由角的定義求出,再由數(shù)量積定義計算;(2)由三角函數(shù)定義寫出坐標,求出的坐標,計算出,利用兩角和的正弦公式可化函數(shù)為一個三角函數(shù)形式,由正弦函數(shù)性質(zhì)可求得最大值.【詳解】(1)由圖可知,,..(2)由題意可知,.因為,,所以.所以,.所以.當()時,取得最大值.【點睛】本題考查任意角的定義,平面向量的數(shù)量積的坐標運算,考查兩角和的正弦公式、誘導公式及正弦函數(shù)的性質(zhì).本題解題關鍵是掌握三角函數(shù)的定義,表示出坐標.19、(I);(II);;(III).【解析】

(I)根據(jù)方程ax2+(b-1)x=0有唯一解,以及列方程求解即可;(II)根據(jù)二次函數(shù)的性質(zhì),函數(shù)的單調(diào)性,即可求得求得最值,(III)分離參數(shù),構造函數(shù),求出函數(shù)的最值即可.【詳解】∵,∴,∴.(I)方程有唯一實數(shù)根,即方程有唯一解,∴,解得∴(II)∵,∴,,若,若.(III)解法一、當時,不等式恒成立,即:在區(qū)間上恒成立,設,顯然函數(shù)在區(qū)間上是減函數(shù),,當且僅當時,不等式在區(qū)間上恒成立,因此.解法二:因為當時,不等式恒成立,所以時,的最小值,當時,在單調(diào)遞減,恒成立,而,所以時不符合題意.當時,在單調(diào)遞增,的最小值為,所以,即即可,綜上所述,.20、(1);(2).【解析】

(1)根據(jù)和關系得到答案.(2)首先計算數(shù)列通項,再根據(jù)裂項求和得到答案.【詳解】解:(1)當時,當時,(2)【點睛】本題考查了和關系,裂項求和,是數(shù)列的常考題型.21、(1)0.02(2)平均數(shù)77,中位數(shù)(3).【解析】

(1)由頻率分布直方圖的性質(zhì)列方程能求出x.(2)由頻率分布直方圖能求出這組數(shù)據(jù)的平均數(shù)和中位數(shù).(3)滿意度評分值在[50,60)內(nèi)有5人,其中男生3人,女生2人,記“滿意度評分值為[50,60)的人中隨機抽取2人進行座

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論