版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
力系的簡(jiǎn)化與合成§2-1力對(duì)點(diǎn)的矩和力對(duì)軸的矩1.力對(duì)點(diǎn)的矩力對(duì)點(diǎn)之矩是力使物體繞某一點(diǎn)轉(zhuǎn)動(dòng)效果的度量,在空間上,力對(duì)于一點(diǎn)的力矩,取決于三個(gè)要素,既力矩的大小,轉(zhuǎn)向和力與矩心所構(gòu)成平面方位。z
Oyx
×的大小:的方向:
與該力和矩心所構(gòu)成平面的法線方向相同,垂直于所組成的平面;力矩矢量的指向可用右手螺旋法則來(lái)確定。z
yx
ABOh×以矩心O為原點(diǎn),建立空間直角坐標(biāo)系oxyz設(shè)為方向的單位矢量。設(shè)力的作用點(diǎn)的坐標(biāo)為力在三個(gè)坐標(biāo)軸上的投影為,矢徑和力分別表示為:yzxO×
特殊情況,當(dāng)時(shí),在面上,垂直于面,與軸平行,這正是平面力對(duì)于點(diǎn)力矩的特例。z
O
yx
×2.力對(duì)軸的矩
力對(duì)軸的力矩是力使物體繞該軸轉(zhuǎn)動(dòng)效果的度量。
可見(jiàn),力對(duì)軸的力矩,是一個(gè)代數(shù)量,其絕對(duì)值等于該力在垂直于該軸平面上的投影對(duì)于這個(gè)平面與該軸的交點(diǎn)的矩的大小。正負(fù)號(hào)如下規(guī)定:從z
軸正端來(lái)看,該力的投影使得物體繞該軸按逆時(shí)針轉(zhuǎn)向轉(zhuǎn)動(dòng),則取正號(hào),反之取負(fù)號(hào)??梢园从沂致菪▌t來(lái)判定。
圖示表明力F
對(duì)固定軸z的矩,可由F
分解為平行于z軸的力Fz
和垂直于z軸的力Fxy
分別對(duì)z軸的力矩和。
Fz
對(duì)軸不產(chǎn)生力矩作用。××對(duì)軸的力矩解:取A點(diǎn)為坐標(biāo)原點(diǎn)例:如圖求F
對(duì)x,y,z
軸和對(duì)A點(diǎn)的力矩C點(diǎn)坐標(biāo)為(-l,2l,0)C點(diǎn)作用力為:××
對(duì)點(diǎn)A的力矩:ק2-2基本力系----匯交力系和力偶系1.匯交力系
作用于剛體上所有力的作用線都交于一點(diǎn)的力系稱為匯交力系(包括平面匯交力系和空間匯交力系)×1)匯交力系合成幾何法:
設(shè)剛體上作用在同一點(diǎn)的力系F1,F2,…Fn.;它們合成可以根據(jù)平行四邊形法,兩個(gè)力逐個(gè)合成,最后得到一個(gè)通過(guò)匯交點(diǎn)A的合力?!?/p>
可以用下面方法求F1,F2,…Fn合力的大小與方向。在空間任取一點(diǎn)a
,先作力三角形求出F1和F2的合力大小和方向?yàn)镕R1,再作力三角形合成FR1和F3得到FR2,依次進(jìn)行,最后合成FR(n-2)和Fn得到FR,這樣形成一個(gè)多邊形abcdef稱為匯交力系力多邊形,矢量af
為力多邊形的封閉邊,它表示匯交力系合力FR的大小和方向,合力的作用線仍通過(guò)原匯交點(diǎn)A。各分力的矢量沿著同一方向首尾相接。
構(gòu)成的力多邊形是一個(gè)有缺口不封閉的力多邊形,合力FR矢量則沿著相反方向連接此缺口,當(dāng)改變各分力的矢量的作圖次序,可以得到形狀不同的力多邊形。但合力矢量保持不變。×由力的分解得各分力矢量表達(dá)式×
合力方向?yàn)椋汉狭κ福汉狭Φ拇笮。骸亮Χ噙呅巫孕蟹忾],剛體處于平衡狀態(tài)。此即匯交力系平衡條件。匯交力系的平衡條件匯交力系平衡方程×解:1)幾何法:如圖所示2)解析法將每個(gè)分力寫成矢量形式:例1:一個(gè)物體在O點(diǎn)受力F1,
F2,F(xiàn)3如圖所示,F(xiàn)1=
F2=F3=5N大小為,求合力。選題×例2一個(gè)梁結(jié)構(gòu)如圖,在F力作用下處于平衡狀態(tài),求A,C支座反力。三力匯交平衡條件:一物體上作用三個(gè)力時(shí)平衡,三力共面和匯交于一點(diǎn)。幾何法×解析法1)取梁為研究對(duì)象2)取坐標(biāo)3)受力分析5)列平衡方程解未知力4)分析力系:平面匯交力系選題×例3直桿AB,AC,AD,用光滑球鉸聯(lián)結(jié)成支架,幾何尺寸如圖,各桿重量不計(jì),A點(diǎn)作用施加作用力P,確定三桿所受力的大小。1)取整體為研究對(duì)象2)取坐標(biāo)3)受力分析4)分析力系:空間匯交力系×5)列平衡方程解未知力壓力拉力×5)列平衡方程解未知力拉力壓力選題×1)力偶2.力偶系力偶:由大小相等,方向相反,作用線平行而不重合的二力組成的力系。2)力偶三要素力偶矩大小;力偶在作用面的轉(zhuǎn)向;力偶作用面的方位;×3)平面力偶記為:(F,F’)平面力偶為代數(shù)量,兩個(gè)要素決定:力偶矩大小:
符號(hào)由轉(zhuǎn)向決定:逆時(shí)針為正4)平面力偶等效定理同一個(gè)平面的兩個(gè)力偶,如果力偶矩大小相等,轉(zhuǎn)向相同則兩個(gè)等效?!?/p>
(P
,P′)可以沿著其作用線移動(dòng)到l1,l2上任何一點(diǎn)。∴力偶可在作用面內(nèi)任意移動(dòng),它是自由矢量,與作用點(diǎn)無(wú)關(guān)。平面力偶等效定理證明
在力偶
(F,F′)作用面上,任取兩點(diǎn)A和B,分別過(guò)A、B兩點(diǎn)作平行線l1,l2與F,F′二力作用線分別交于C點(diǎn)和D點(diǎn),聯(lián)結(jié)CD,過(guò)C,D兩點(diǎn),
在CD連線方向上加平衡力Q,Q′,則P=F+Q,P′=F′+Q′,則
(P
,P′)作用結(jié)果等效于(F,F′)的作用結(jié)果?!疗矫嫔蟽蓚€(gè)力偶:力偶矩大小相等;轉(zhuǎn)向相同。兩個(gè)等效×平面上兩個(gè)力偶合成×5)空間力偶
M(F,F′),由(F,F′)二力構(gòu)成為一矢量。方向垂直于(F,F′)作用線所構(gòu)成的平面,其指向由右手法則確定.其大小為:空間力偶等效條件:力偶矩矢相等×如圖所示組成力偶的兩個(gè)力(FA,FB)對(duì)于空間任意點(diǎn)O的矩:大小為
與O點(diǎn)選取無(wú)關(guān);方向垂直于(FA,FB)組成的平面,指向由確定。表明力偶矩矢量是一個(gè)自由矢量。
×2)力偶系的合成空間力偶系如圖所示,由于力偶矩矢量是自由矢量,所以可以將作用在剛體上的每個(gè)力偶矩矢量平行地移動(dòng)到同一點(diǎn)。力偶系合成與匯交力系的合成方法相似,構(gòu)成匯交矢量系。
×合力偶矢量的大小合力偶矢量的方向
×力偶系的平衡條件力偶多邊形的自行封閉,剛體處于平衡狀態(tài)。此即力偶系平衡條件。匯交力系平衡方程×例4一個(gè)邊長(zhǎng)為1m的立方體物體上受三個(gè)力偶作用如圖求合力偶。解:1)幾何法:圖示。×2)解析法:將每個(gè)力偶寫成矢量形式:選題×例5梁AB上作用一力偶,力偶矩為M,確定支座反力幾何法×解析法1)取梁為研究對(duì)象2)取坐標(biāo)3)受力分析5)列平衡方程解未知力4)分析力系:平面力偶系選題×例6無(wú)重曲桿ABCD結(jié)構(gòu)如圖,D端為球鉸支座,A端受軸承約束,已知力偶M2,M3
,曲桿處于平衡狀態(tài),確定
M1和支座反力。解:1)取無(wú)重曲桿ABCD為研究對(duì)象2)建立坐標(biāo)系3)受力分析組成力偶×選題ק2-3力線平移定理力線平移定理:作用在剛體上的力可以平移到剛體的任意一點(diǎn),但需要附加一個(gè)力偶,此力偶矩等于原力對(duì)新的作用點(diǎn)之矩。證明:設(shè)力F作用在剛體的A點(diǎn),在剛體的任意點(diǎn)B上加平行于F,且構(gòu)成平衡力系的二力F′和F"
,使F=F′=F"
,此時(shí),
可以看成F′和力偶(F,F")的作用。而F′和F的大小和方向相同,而作用點(diǎn)不同。(F,F")
的力偶矩滿足:M=M(F,F")=MB(F)×力線平移定理的簡(jiǎn)單應(yīng)用攻絲時(shí),必須兩手握住扳手,而且用力應(yīng)該相等。其原因就是F的作用等效于F′和MO的作用效果。這個(gè)力偶的作用是使絲錐轉(zhuǎn)動(dòng),而力的作用使絲錐變形或折斷?!?個(gè)自由度約束(固定端約束)平面情況ק2-4空間力系向一點(diǎn)簡(jiǎn)化,主矢和主矩1.剛體上作用力系向一點(diǎn)簡(jiǎn)化主矢和主矩已知?jiǎng)傮w上作用的力系為F1,F2,
F3,…Fn,見(jiàn)圖,將各作用力向O點(diǎn)簡(jiǎn)化。
根據(jù)力線平移定理,如將第i個(gè)力向O點(diǎn)簡(jiǎn)化的結(jié)果為一個(gè)力Fi和一個(gè)力偶Mi=Mo(Fi)作用.
這樣形成一個(gè)作用在O點(diǎn)的匯交力系F1
,F2
,
F3
,…Fn
和力偶系M1,M2,M3,…Mn.
×根據(jù)匯交力系合成方法,F(xiàn)1
,F2
,
F3
,…
Fn
的合成結(jié)果是一個(gè)合力FR
,等于原力系的矢量和。稱為主矢根據(jù)力偶系合成方法,M1,M2,M3,…
Mn可以平移到O點(diǎn),合成結(jié)果是一個(gè)合力偶。即等于原力系對(duì)于簡(jiǎn)化中心之矩的矢量和,即等于原力系對(duì)于簡(jiǎn)化中心之矩的矢量。稱為主矩空間力系向任意點(diǎn)簡(jiǎn)化的結(jié)果為:一個(gè)力和一個(gè)力偶,這個(gè)力FR
過(guò)簡(jiǎn)化中心,稱為主矢,這個(gè)力偶MO稱為主矩。
×主矩MO與簡(jiǎn)化中心位置有關(guān)主矢FR與簡(jiǎn)化中心位置無(wú)關(guān)
×主矢FR解析式:主矢大小主矢方向×主矩MO解析式:×主矩大小主矩方向ק2-5空間力系向一點(diǎn)簡(jiǎn)化結(jié)果分析簡(jiǎn)化結(jié)果為合力偶。這個(gè)合力偶與原力系等效。因?yàn)榱ε际亲杂墒噶?,力偶矩矢量與矩心位置無(wú)關(guān)。所以,此時(shí)主矩矢量與簡(jiǎn)化中心無(wú)關(guān)。1.當(dāng)時(shí):2.當(dāng)時(shí):簡(jiǎn)化結(jié)果為合力。這個(gè)合力與原力系等效。這個(gè)合力作用線過(guò)簡(jiǎn)化中心。3.當(dāng)時(shí)有下列幾種情況:×
簡(jiǎn)化結(jié)果為不過(guò)簡(jiǎn)化中心的合力由加減平衡力系公理,可去掉。將用構(gòu)成力偶的二力代替,二力在垂直于平面內(nèi),使得:⊥×結(jié)果是一個(gè)力和一個(gè)力偶。這種的力和力偶共同作用效果,稱為力螺旋.過(guò)簡(jiǎn)化中心.攻螺紋正是這種結(jié)果。將化為構(gòu)成力偶的二力,可直觀看到這種效果
∥×
將分解為垂直于和平行于的兩個(gè)力偶和
用構(gòu)成力偶的二力代替。且滿足:由加減平衡力系公理,去掉。簡(jiǎn)化結(jié)果為不通過(guò)簡(jiǎn)化中心的一個(gè)合力和力偶;即為不通過(guò)簡(jiǎn)化中心的力螺旋。
×3.合力矩定理當(dāng)FR⊥MO時(shí),簡(jiǎn)化結(jié)果為合力。有根據(jù)力對(duì)于點(diǎn)的矩與力對(duì)于軸之矩的關(guān)系,上式向過(guò)O點(diǎn)的任意軸投影,可得:有合力矩定理×
合力矩定理:
空間任意力簡(jiǎn)化結(jié)果為合力,合力對(duì)于任意一點(diǎn)的矩等于各分力對(duì)同一點(diǎn)之矩的矢量和。合力對(duì)于任意軸的矩等于各分力對(duì)同一軸的矩的代數(shù)和。這就是合力矩定理?!林魇钢骶刂魇概c主矩夾角余弦解:
例7圖示一個(gè)邊長(zhǎng)為1m的立方體物體上受三個(gè)力:F1=5N,F2=5N,F3=5N作用,求合成結(jié)果合成結(jié)果應(yīng)是力螺旋。力系向O點(diǎn)簡(jiǎn)化得:×z
F2
F3
F1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度特種衣物洗滌與保養(yǎng)服務(wù)合同3篇
- 2025年度蔬菜深加工產(chǎn)品研發(fā)與銷售合同3篇
- 臺(tái)山光伏工地施工方案
- 2024版機(jī)票采購(gòu)合同范本
- 2025年度計(jì)算機(jī)硬件采購(gòu)與維護(hù)合同2篇
- 二零二五年度海外勞務(wù)派遣與技能培訓(xùn)合同范本3篇
- 鹵素快速烘干水分儀安全操作規(guī)程
- 2025高考數(shù)學(xué)考二輪專題過(guò)關(guān)檢測(cè)4 立體幾何-專項(xiàng)訓(xùn)練【含答案】
- 2024影視作品制作與發(fā)行獨(dú)家授權(quán)合同
- 二零二五年度影視作品攝制合同投資風(fēng)險(xiǎn)評(píng)估2篇
- 冬春季呼吸道傳染病防控
- 數(shù)學(xué)-2025年高考綜合改革適應(yīng)性演練(八省聯(lián)考)
- 2024-2025學(xué)年安徽省六安市金安區(qū)三上數(shù)學(xué)期末調(diào)研試題含解析
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之10:“5領(lǐng)導(dǎo)作用-5.4創(chuàng)新文化”(雷澤佳編制-2025B0)
- 2024年醫(yī)療器械經(jīng)營(yíng)質(zhì)量管理規(guī)范培訓(xùn)課件
- 2024年計(jì)算機(jī)二級(jí)WPS考試題庫(kù)380題(含答案)
- 法院傳票模板
- 企業(yè)價(jià)值圖(企業(yè)價(jià)值管理圖EVM)
- 水利施工風(fēng)險(xiǎn)管理責(zé)任落實(shí)表
- 化妝品原料名稱對(duì)照及用途
- 雙梁門式起重機(jī)計(jì)算書
評(píng)論
0/150
提交評(píng)論