福建省泉州市泉州第十六中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題含解析_第1頁
福建省泉州市泉州第十六中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題含解析_第2頁
福建省泉州市泉州第十六中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題含解析_第3頁
福建省泉州市泉州第十六中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題含解析_第4頁
福建省泉州市泉州第十六中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.小明制作了十張卡片,上面分別標(biāo)有1~10這十個數(shù)字.從這十張卡片中隨機抽取一張恰好能被4整除的概率是A. B. C. D.2.一枚質(zhì)地勻均的骰子,其六個面上分別標(biāo)有數(shù)字:1,2,3,4,5,6,投擲一次,朝上面的數(shù)字大于4的概率是()A. B. C. D.3.如圖,在平面直角坐標(biāo)系中,點P在函數(shù)y=(x>0)的圖象上從左向右運動,PA∥y軸,交函數(shù)y=﹣(x>0)的圖象于點A,AB∥x軸交PO的延長線于點B,則△PAB的面積()A.逐漸變大 B.逐漸變小 C.等于定值16 D.等于定值244.將方程x2-6x+3=0左邊配成完全平方式,得到的方程是(

)A.(x-3)2=-3

B.(x-3)2=6

C.(x-3)2=3

D.(x-3)2=125.如圖,已知一次函數(shù)y=kx-2的圖象與x軸、y軸分別交于A,B兩點,與反比例函數(shù)的圖象交于點C,且AB=AC,則k的值為()A.1 B.2 C.3 D.46.如圖,的半徑等于,如果弦所對的圓心角等于,那么圓心到弦的距離等于()A. B. C. D.7.對于反比例函數(shù),下列說法中不正確的是()A.點在它的圖象上B.它的圖象在第一、三象限C.隨的增大而減小D.當(dāng)時,隨的增大而減小8.已知扇形的圓心角為45°,半徑長為12,則該扇形的弧長為()A. B.2π C.3π D.12π9.一個不透明的袋中有四張完全相同的卡片,把它們分別標(biāo)上數(shù)字1、2、2、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數(shù)字之和為偶數(shù)的概率是()A. B.C. D.10.已知⊙O的半徑為4,圓心O到弦AB的距離為2,則弦AB所對的圓周角的度數(shù)是()A.30° B.60°C.30°或150° D.60°或120°11.如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD=()A.116° B.32° C.58° D.64°12.下列一元二次方程中有兩個不相等的實數(shù)根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=0二、填空題(每題4分,共24分)13.如圖,在平面直角坐標(biāo)系中,已知點E(﹣4,2),F(xiàn)(﹣1,﹣1).以原點O為位似中心,把△EFO擴大到原來的2倍,則點E的對應(yīng)點E'的坐標(biāo)為_____.14.甲、乙兩人在100米短跑訓(xùn)練中,某5次的平均成績相等,甲的方差是0.12,乙的方差是0.05,這5次短跑訓(xùn)練成績較穩(wěn)定的是_____.(填“甲”或“乙”)15.已知實數(shù)x,y滿足,則x+y的最大值為_______.16.如圖,在置于平面直角坐標(biāo)系中,點的坐標(biāo)為,點的坐標(biāo)為,點是內(nèi)切圓的圓心.將沿軸的正方向作無滑動滾動,使它的三邊依次與軸重合,第一次滾動后圓心為,第二次滾動后圓心為,…,依此規(guī)律,第2020次滾動后,內(nèi)切圓的圓心的坐標(biāo)是__________.17.一個質(zhì)地均勻的小正方體,六個面分別標(biāo)有數(shù)字1,1,2,4,5,5,隨機擲一次小正方體,朝上一面的數(shù)字是奇數(shù)的概率是__________.18.二次函數(shù)y=x2?4x+5的圖象的頂點坐標(biāo)為.三、解答題(共78分)19.(8分)如圖1.在平面直角坐標(biāo)系中,拋物線與軸相交于兩點,頂點為,設(shè)點是軸的正半軸上一點,將拋物線繞點旋轉(zhuǎn),得到新的拋物線.求拋物線的函數(shù)表達式:若拋物線與拋物線在軸的右側(cè)有兩個不同的公共點,求的取值范圍.如圖2,是第一象限內(nèi)拋物線上一點,它到兩坐標(biāo)軸的距離相等,點在拋物線上的對應(yīng)點,設(shè)是上的動點,是上的動點,試探究四邊形能否成為正方形?若能,求出的值;若不能,請說明理由.20.(8分)某校為了解節(jié)能減排、垃圾分類等知識的普及情況,從該校2000名學(xué)生中隨機抽取了部分學(xué)生進行調(diào)查,調(diào)查結(jié)果分為“非常了解”、“了解”、“了解較少”、“不了解”四類,并將調(diào)查結(jié)果繪制成如圖所示兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:(1)補全條形統(tǒng)計圖并填空,本次調(diào)查的學(xué)生共有名,估計該校2000名學(xué)生中“不了解”的人數(shù)為.(2)“非常了解”的4人中有A1、A2兩名男生,B1、B2兩名女生,若從中隨機抽取兩人去參加環(huán)保知識競賽,請用畫樹狀圖或列表的方法,求恰好抽到兩名男生的概率.21.(8分)數(shù)學(xué)活動課上,老師提出問題:如圖1,有一張長,寬的長方形紙板,在紙板的四個角裁去四個相同的小正方形,然后把四邊折起來,做成-一個無蓋的盒子,問小正方形的邊長為多少時,盒子的體積最大.下面是探究過程,請補充完整:(1)設(shè)小正方形的邊長為,體積為,根據(jù)長方體的體積公式得到和的關(guān)系式;(2)確定自變量的取值范圍是(3)列出與的幾組對應(yīng)值.······(4)在平面直角坐標(biāo)系中,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點畫出該函數(shù)的圖象如圖2,結(jié)合畫出的函數(shù)圖象,當(dāng)小正方形的邊長約為時,盒子的體積最大,最大值約為.(估讀值時精確到)22.(10分)已知反比例函數(shù)y=(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個公共點,求k的值;(2)如圖,反比例函數(shù)y=(1≤x≤4)的圖象記為曲線Cl,將Cl向左平移2個單位長度,得曲線C2,請在圖中畫出C2,并直接寫出C1平移至C2處所掃過的面積.23.(10分)有一張長,寬的長方形硬紙片(如圖1),截去四個全等的小正方形之后,折成無蓋的紙盒(如圖2).若紙盒的底面積為,求紙盒的高.24.(10分)⊙O直徑AB=12cm,AM和BN是⊙O的切線,DC切⊙O于點E且交AM于點D,交BN于點C,設(shè)AD=x,BC=y(tǒng).(1)求y與x之間的關(guān)系式;(2)x,y是關(guān)于t的一元二次方程2t2﹣30t+m=0的兩個根,求x,y的值;(3)在(2)的條件下,求△COD的面積.25.(12分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點D,交AC于點E.(1)求證:BD=CD.(2)若弧DE=50°,求∠C的度數(shù).(3)過點D作DF⊥AB于點F,若BC=8,AF=3BF,求弧BD的長.26.如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸交于點,連接,點為軸上一點,,連接.(1)求反比例函數(shù)與一次函數(shù)的解析式;(2)求的面積.

參考答案一、選擇題(每題4分,共48分)1、C【詳解】∵10張卡片的數(shù)中能被4整除的數(shù)有:4、8,共2個,∴從中任意摸一張,那么恰好能被4整除的概率是故選C2、B【分析】直接得出朝上面的數(shù)字大于4的個數(shù),再利用概率公式求出答案.【詳解】∵一枚質(zhì)地均勻的骰子,其六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6,投擲一次,∴共有6種情況,其中朝上面的數(shù)字大于4的情況有2種,∴朝上一面的數(shù)字是朝上面的數(shù)字大于4的概率為:,故選:B.【點睛】本題考查簡單的概率求法,概率=所求情況數(shù)與總情況數(shù)的比;熟練掌握概率公式是解題關(guān)鍵.3、C【分析】根據(jù)反比例函數(shù)k的幾何意義得出S△POC=×2=1,S矩形ACOD=6,即可得出,從而得出,通過證得△POC∽△PBA,得出,即可得出S△PAB=1S△POC=1.【詳解】如圖,由題意可知S△POC=×2=1,S矩形ACOD=6,∵S△POC=OC?PC,S矩形ACOD=OC?AC,∴,∴,∴,∵AB∥軸,∴△POC∽△PBA,∴,∴S△PAB=1S△POC=1,∴△PAB的面積等于定值1.故選:C.【點睛】本題考查了反比例函數(shù)的性質(zhì)以及矩形的面積的計算,利用相似三角形面積比等于相似比的平方是解決本題的關(guān)鍵.4、B【解析】試題分析:移項,得x2-1x=-3,等式兩邊同時加上一次項系數(shù)一半的平方(-3)2,得x2-1x+(-3)2=-3+(-3)2,即(x-3)2=1.故選B.點睛:配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.5、B【分析】如圖所示,作CD⊥x軸于點D,根據(jù)AB=AC,證明△BAO≌△CAD(AAS),根據(jù)一次函數(shù)解析式表達出BO=CD=2,OA=AD=,從而表達出點C的坐標(biāo),代入反比例函數(shù)解析式即可解答.【詳解】解:如圖所示,作CD⊥x軸于點D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,對于一次函數(shù)y=kx-2,當(dāng)x=0時,y=-2,當(dāng)y=0時,x=,∴BO=CD=2,OA=AD=,∴OD=∴點C(,2),∵點C在反比例函數(shù)的圖象上,∴,解得k=2,故選:B.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,全等三角形的判定與性質(zhì),反比例函數(shù)圖象上點的坐標(biāo)特征,難度適中.表達出C點的坐標(biāo)是解題的關(guān)鍵.6、C【分析】過O作OD⊥AB于D,根據(jù)等腰三角形三線合一得∠BOD=60°,由30°角所對的直角邊等于斜邊的一半求解即可.【詳解】解:過O作OD⊥AB,垂足為D,∵OA=OB,∴∠BOD=∠AOB=×120°=60°,∴∠B=30°,∴OD=OB=×4=2.即圓心到弦的距離等于2.故選:C.【點睛】本題考查圓的基本性質(zhì)及等腰三角形的性質(zhì),含30°角的直角三角形的性質(zhì),根據(jù)題意作出輔助線,解直角三角形是解答此題的關(guān)鍵.7、C【解析】根據(jù)反比例函數(shù)的性質(zhì)用排除法解答,當(dāng)系數(shù)k>0時,函數(shù)圖象在第一、三象限,當(dāng)x>0或x<0時,y隨x的增大而減小,由此進行判斷.【詳解】A、把點(-2,-1)代入反比例函數(shù)y=得-1=-1,本選項正確;

B、∵k=2>0,∴圖象在第一、三象限,本選項正確;

C、∵k=2>0,∴圖象在第一、三象限內(nèi)y隨x的增大而減小,本選項不正確;

D、當(dāng)x<0時,y隨x的增大而減小,本選項正確.

故選C.【點睛】考查了反比例函數(shù)y=(k≠0)的性質(zhì):①當(dāng)k>0時,圖象分別位于第一、三象限;當(dāng)k<0時,圖象分別位于第二、四象限.②當(dāng)k>0時,在同一個象限內(nèi),y隨x的增大而減??;當(dāng)k<0時,在同一個象限,y隨x的增大而增大.8、C【解析】試題分析:根據(jù)弧長公式:l==3π,故選C.考點:弧長的計算.9、D【解析】畫樹狀圖展示所有16種等可能的結(jié)果數(shù),找出兩次抽取的卡片上數(shù)字之和為偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結(jié)果數(shù),其中兩次抽取的卡片上數(shù)字之和為偶數(shù)的結(jié)果數(shù)為10,所以兩次抽取的卡片上數(shù)字之和為偶數(shù)的概率.故選D.【點睛】本題考查了列表法與樹狀圖法.利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.10、D【分析】根據(jù)題意作出圖形,利用三角形內(nèi)角和以及根據(jù)圓周角定理和圓內(nèi)接四邊形的性質(zhì)進行分析求解.【詳解】解:如圖,∵OH⊥AB,OA=OB=4,∴∠AHO=90°,在Rt△OAH中,sin∠OAH=∴∠OAH=30°,∴∠AOB=180°-30°-30°=120°,∴∠ACB=∠AOB=60°,∠ADB=180°-∠ACB=120°(圓內(nèi)接四邊形的性質(zhì)),即弦AB所對的圓周角的度數(shù)是60°或120°.故選:D.【點睛】本題考查圓周角定理,圓周角定理即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.11、B【分析】根據(jù)圓周角定理求得:∠AOD=2∠ABD=116°(同弧所對的圓周角是所對的圓心角的一半)、∠BOD=2∠BCD(同弧所對的圓周角是所對的圓心角的一半);根據(jù)平角是180°知∠BOD=180°﹣∠AOD,∴∠BCD=32°.【詳解】解:連接OD.∵AB是⊙0的直徑,CD是⊙O的弦,∠ABD=58°,∴∠AOD=2∠ABD=116°(同弧所對的圓周角是所對的圓心角的一半);又∵∠BOD=180°﹣∠AOD,∠BOD=2∠BCD(同弧所對的圓周角是所對的圓心角的一半);∴∠BCD=32°;故答案為B.【點睛】本題主要考查了圓周角定理,理解同弧所對的圓周角是所對的圓心角的一半是解答本題的關(guān)鍵.12、C【分析】根據(jù)一元二次方程根的判別式,分別計算△的值,進行判斷即可.【詳解】解:選項A:△=0,方程有兩個相等的實數(shù)根;選項B、△=0-12=-12<0,方程沒有實數(shù)根;選項C、△=4-4×1×(-17)=4+68=72>0,方程有兩個不相等的實數(shù)根;選項D、△=1-4×5=-19<0,方程沒有實數(shù)根.故選:C.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac;當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.二、填空題(每題4分,共24分)13、(﹣8,4),(8,﹣4)【分析】根據(jù)在平面直角坐標(biāo)系中,位似變換的性質(zhì)計算即可.【詳解】解:以原點O為位似中心,把△EFO擴大到原來的2倍,點E(﹣4,2),∴點E的對應(yīng)點E'的坐標(biāo)為(﹣4×2,2×2)或(4×2,﹣2×2),即(﹣8,4),(8,﹣4),故答案為:(﹣8,4),(8,﹣4).【點睛】本題考查的是位似變換的性質(zhì),在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k.14、乙【分析】根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】解:∵甲的方差為0.14,乙的方差為0.06,∴S甲2>S乙2,∴成績較為穩(wěn)定的是乙;故答案為:乙.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.15、4【解析】用含x的代數(shù)式表示y,計算x+y并進行配方即可.【詳解】∵∴∴∴當(dāng)x=-1時,x+y有最大值為4故答案為4【點睛】本題考查的是求代數(shù)式的最大值,解題的關(guān)鍵是配方法的應(yīng)用.16、(8081,1)【分析】由勾股定理得出AB=,得出Rt△OAB內(nèi)切圓的半徑==1,因此P的坐標(biāo)為(1,1),由題意得出P3的坐標(biāo)(3+5+4+1,1),得出規(guī)律:每滾動3次一個循環(huán),由2020÷3=673…1,即可得出結(jié)果.【詳解】解:∵點A的坐標(biāo)為(0,4),點B的坐標(biāo)為(3,0),∴OA=4,OB=3,∴AB=∴Rt△OAB內(nèi)切圓的半徑==1,∴P的坐標(biāo)為(1,1),P2的坐標(biāo)為(3+5+4-1,1),即(11,1)∵將Rt△OAB沿x軸的正方向作無滑動滾動,使它的三邊依次與x軸重合,第一次滾動后圓心為P1,第二次滾動后圓心為P2,…,設(shè)P1的橫坐標(biāo)為x,根據(jù)切線長定理可得5-(x-3)+3-(x-3)=4解得:x=5∴P1的坐標(biāo)為(3+2,1)即(5,1)∴P3(3+5+4+1,1),即(13,1),每滾動3次一個循環(huán),∵2020÷3=673…1,∴第2020次滾動后,Rt△OAB內(nèi)切圓的圓心P2020的橫坐標(biāo)是673×(3+5+4)+5,即P2020的橫坐標(biāo)是8081,∴P2020的坐標(biāo)是(8081,1);故答案為:(8081,1).【點睛】本題考查了三角形的內(nèi)切圓與內(nèi)心、切線長定理、勾股定理、坐標(biāo)與圖形性質(zhì)等知識;根據(jù)題意得出規(guī)律是解題的關(guān)鍵.17、【分析】直接利用概率求法進而得出答案.【詳解】∵一個質(zhì)地均勻的小正方體,六個面分別標(biāo)有數(shù)字1,1,2,4,5,5,∴隨機擲一次小正方體,朝上一面的數(shù)字是奇數(shù)的概率是:.故答案為:.【點睛】此題主要考查了概率公式,正確掌握概率公式是解題關(guān)鍵.18、(2,1)【分析】將二次函數(shù)解析式化為頂點式,即可得到頂點坐標(biāo).【詳解】將二次函數(shù)配方得則頂點坐標(biāo)為(2,1)考點:二次函數(shù)的圖象和性質(zhì).三、解答題(共78分)19、;;四邊形可以為正方形,【分析】(1)由題意得出A,B坐標(biāo),并代入坐標(biāo)利用待定系數(shù)法求出拋物線的函數(shù)表達式;(2)根據(jù)題意分別求出當(dāng)過點時m的值以及當(dāng)過點時m的值,并以此進行分析求得;(3)由題意設(shè),代入解出n,并作,于,利用正方形性質(zhì)以及全等三角形性質(zhì)得出M為,將代入即可求得答案.【詳解】解:將三點代入得解得;如圖.關(guān)于對稱的拋物線為當(dāng)過點時有解得:當(dāng)過點時有解得:;四邊形可以為正方形由題意設(shè),是拋物線第一象限上的點解得:(舍去)即如圖作,于,于四邊形為正方形易證為將代入得解得:(舍去)當(dāng)時四邊形為正方形.【點睛】本題考查二次函數(shù)綜合題、中心對稱變換、正方形的性質(zhì)、全等三角形的判定和性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,難度大.20、(1)圖詳見解析,50,600;(2).【分析】(1)由“非常了解”的人數(shù)及其所占百分比求得總?cè)藬?shù),繼而由各了解程度的人數(shù)之和等于總?cè)藬?shù)求得“不了解”的人數(shù),用總?cè)藬?shù)乘以樣本中“不了解”人數(shù)所占比例可得;(2)分別用樹狀圖和列表兩種方法表示出所有等可能結(jié)果,從中找到恰好抽到2名男生的結(jié)果數(shù),利用概率公式計算可得.【詳解】解:(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為4÷8%=50人,則不了解的學(xué)生人數(shù)為50﹣(4+11+20)=15人,∴估計該校2000名學(xué)生中“不了解”的人數(shù)約有2000×=600人,補圖如下:故答案為:50、600;(2)畫樹狀圖如下:共有12種可能的結(jié)果,恰好抽到2名男生的結(jié)果有2個,∴P(恰好抽到2名男生)==.【點睛】本題考查了列表法與樹狀圖法、扇形統(tǒng)計圖、條形統(tǒng)計圖;通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.21、(1);(2);(3)3,2;(4)0.55【分析】(1)根據(jù)長方形和正方形邊長分別求出長方體的長、寬、高,然后即可得出和的關(guān)系式;(2)邊長都大于零,列出不等式組,求解即可;(3)將的值代入關(guān)系式,即可得解;(4)根據(jù)函數(shù)圖象,由最大值即可估算出的值.【詳解】(1)由題意,得長方體的長為,寬為,高為∴y和x的關(guān)系式:(2)由(1)得∴變量x的取值范圍是;(3)將和代入(1)中關(guān)系式,得分別為3,2;(4)由圖象可知,與3.03對應(yīng)的值約為0.55.【點睛】此題主要考查展開圖折疊成長方體,以及與函數(shù)的綜合運用,熟練掌握,即可解題.22、(2)k=-2;(2)作圖見解析;2.【分析】(2)把這兩個函數(shù)解析式聯(lián)立,化簡可得kx2+4x-4=0,又因y=的圖像與直線y=kx+4只有一個公共點,可得△=0,即可求得k值;(2)C2平移至C2處所掃過的面積等于平行四邊形C2C2AB的面積,直接求得即可.【詳解】Jie:(2)聯(lián)立得kx2+4x-4=0,又∵y=的圖像與直線y=kx+4只有一個公共點,∴42-4?k?(—4)=0,∴k=-2.(2)如圖:C2平移至C2處所掃過的面積為2.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題;平移的性質(zhì).23、紙盒的高為.【分析】設(shè)紙盒的高是,根據(jù)題意,其底面的長寬分別為(40-2x)和(30-2x),根據(jù)長方形面積公式列方程求解即可.【詳解】解:設(shè)紙盒的高是.依題意,得.整理得.解得,(不合題意,舍去).答:紙盒的高為.【點睛】本題考查一元二次方程的應(yīng)用,根據(jù)題意用含x的式子表示底面的長和寬,正確列方程,解方程是本題的解題關(guān)鍵.24、(1)y=;(2)或;(3)1.【分析】(1)如圖,作DF⊥BN交BC于F,根據(jù)切線長定理得,則DC=DE+CE=x+y,在中根據(jù)勾股定理,就可以求出y與x之間的關(guān)系式.(2)由(1)求得,由根與系數(shù)的關(guān)系求得的值,通過解一元二次方程即可求得x,y的值.(3)如圖,連接OD,OE,OC,由AM和BN是⊙O的切線,DC切⊙O于點E,得到,,,推出S△AOD=S△ODE,S△OBC=S△COE,即可得出答案.【詳解】(1)如圖,作DF⊥BN交BC于F;∵AM、BN與⊙O切于點定A、B,∴AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四邊形ABFD是矩形,∴BF=AD=x,DF=AB=12,∵BC=y(tǒng),∴FC=BC﹣BF=y(tǒng)﹣x;∵DE切⊙O于E,∴DE=DA=xCE=CB=y(tǒng),則DC=DE+CE=x+y,在Rt△DFC中,由勾股定理得:(x+y)2=(y﹣x)2+122,整理為:y=,∴y與x的函數(shù)關(guān)系式是y=.(2)由(1)知xy=36,x,y是方程2x2﹣30x+a=0的兩個根,∴根據(jù)韋達定理知,xy=,即a=72;∴原方程為x2﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論