版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年福建省龍巖市龍巖一中高中畢業(yè)生復(fù)習(xí)統(tǒng)一檢測試題數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知i是虛數(shù)單位,則1+iiA.-12+32i2.一個盒子里有4個分別標(biāo)有號碼為1,2,3,4的小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取3次,則取得小球標(biāo)號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種3.已知雙曲線的右焦點(diǎn)為為坐標(biāo)原點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn)及點(diǎn),則雙曲線的方程為()A. B. C. D.4.已知函數(shù),關(guān)于的方程R)有四個相異的實(shí)數(shù)根,則的取值范圍是(
)A. B. C. D.5.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限6.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1477.已知為坐標(biāo)原點(diǎn),角的終邊經(jīng)過點(diǎn)且,則()A. B. C. D.8.三棱錐的各個頂點(diǎn)都在求的表面上,且是等邊三角形,底面,,,若點(diǎn)在線段上,且,則過點(diǎn)的平面截球所得截面的最小面積為()A. B. C. D.9.已知定點(diǎn),,是圓上的任意一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,線段的垂直平分線與直線相交于點(diǎn),則點(diǎn)的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓10.如圖所示點(diǎn)是拋物線的焦點(diǎn),點(diǎn)、分別在拋物線及圓的實(shí)線部分上運(yùn)動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.11.已知為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且,過點(diǎn)的動直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),拋物線的準(zhǔn)線與軸的交點(diǎn)為.給出下列四個命題:①在拋物線上滿足條件的點(diǎn)僅有一個;②若是拋物線準(zhǔn)線上一動點(diǎn),則的最小值為;③無論過點(diǎn)的直線在什么位置,總有;④若點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)在同一條直線上.其中所有正確命題的個數(shù)為()A.1 B.2 C.3 D.412.已知,,是平面內(nèi)三個單位向量,若,則的最小值()A. B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則“”是“”的__________條件.14.正四面體的各個點(diǎn)在平面同側(cè),各點(diǎn)到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.15.已知函數(shù)的圖象在點(diǎn)處的切線方程是,則的值等于__________.16.一個四面體的頂點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo)分別是,,,,則該四面體的外接球的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列和滿足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和.18.(12分)如圖,在矩形中,,,點(diǎn)分別是線段的中點(diǎn),分別將沿折起,沿折起,使得重合于點(diǎn),連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.19.(12分)已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.20.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.21.(12分)已知拋物線,過點(diǎn)的直線交拋物線于兩點(diǎn),坐標(biāo)原點(diǎn)為,.(1)求拋物線的方程;(2)當(dāng)以為直徑的圓與軸相切時,求直線的方程.22.(10分)已知函數(shù)()在定義域內(nèi)有兩個不同的極值點(diǎn).(1)求實(shí)數(shù)的取值范圍;(2)若有兩個不同的極值點(diǎn),,且,若不等式恒成立.求正實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
利用復(fù)數(shù)的運(yùn)算法則即可化簡得出結(jié)果【詳解】1+i故選D本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題。2.C【解析】
由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標(biāo)號均不為4的球的情況,進(jìn)而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標(biāo)號最大值是4的取法有種,故選:C本題考查古典概型,考查補(bǔ)集思想的應(yīng)用,屬于基礎(chǔ)題.3.C【解析】
根據(jù)雙曲線方程求出漸近線方程:,再將點(diǎn)代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.4.A【解析】=,當(dāng)時時,單調(diào)遞減,時,單調(diào)遞增,且當(dāng),當(dāng),
當(dāng)時,恒成立,時,單調(diào)遞增且,方程R)有四個相異的實(shí)數(shù)根.令=則,,即.5.C【解析】分析:根據(jù)復(fù)數(shù)的運(yùn)算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對應(yīng)的點(diǎn),得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點(diǎn)睛:本題主要考查了復(fù)數(shù)的四則運(yùn)算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運(yùn)算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.6.B【解析】
結(jié)合隨機(jī)模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題7.C【解析】
根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計算能力.8.A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點(diǎn)D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點(diǎn)E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點(diǎn)D的平面截球O所得截面圓的最小半徑為所以過點(diǎn)D的平面截球O所得截面的最小面積為故選:A本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.9.B【解析】
根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進(jìn)行判斷即可.【詳解】因?yàn)榫€段的垂直平分線與直線相交于點(diǎn),如下圖所示:所以有,而是中點(diǎn),連接,故,因此當(dāng)在如下圖所示位置時有,所以有,而是中點(diǎn),連接,故,因此,綜上所述:有,所以點(diǎn)的軌跡是雙曲線.故選:B本題考查了雙曲線的定義,考查了數(shù)學(xué)運(yùn)算能力和推理論證能力,考查了分類討論思想.10.B【解析】
根據(jù)拋物線方程求得焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,結(jié)合定義表示出;根據(jù)拋物線與圓的位置關(guān)系和特點(diǎn),求得點(diǎn)橫坐標(biāo)的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點(diǎn),準(zhǔn)線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點(diǎn)、分別在拋物線及圓的實(shí)線部分上運(yùn)動,解得交點(diǎn)橫坐標(biāo)為2.點(diǎn)、分別在兩個曲線上,總是平行于軸,因而兩點(diǎn)不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.本題考查了拋物線定義、方程及幾何性質(zhì)的簡單應(yīng)用,圓的幾何性質(zhì)應(yīng)用,屬于中檔題.11.C【解析】
①:由拋物線的定義可知,從而可求的坐標(biāo);②:做關(guān)于準(zhǔn)線的對稱點(diǎn)為,通過分析可知當(dāng)三點(diǎn)共線時取最小值,由兩點(diǎn)間的距離公式,可求此時最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達(dá)定理,可知焦點(diǎn)坐標(biāo)的關(guān)系,進(jìn)而可求,從而可判斷出的關(guān)系;④:計算直線的斜率之差,可得兩直線斜率相等,進(jìn)而可判斷三點(diǎn)在同一條直線上.【詳解】解:對于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點(diǎn)有二個,故①不正確;對于②,不妨設(shè),則關(guān)于準(zhǔn)線的對稱點(diǎn)為,故,當(dāng)且僅當(dāng)三點(diǎn)共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點(diǎn)坐標(biāo)為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補(bǔ),所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點(diǎn)在同一條直線上,故④正確.故選:C.本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點(diǎn)的斜率公式.本題的難點(diǎn)在于第二個命題,結(jié)合初中的“飲馬問題”分析出何時取最小值.12.A【解析】
由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點(diǎn)間的距離的幾何意義可求出結(jié)果.【詳解】解:設(shè),,,則,從而,等號可取到.故選:A此題考查的是平面向量的坐標(biāo)、模的運(yùn)算,利用整體代換,再結(jié)合距離公式求解,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13.充分必要【解析】
根據(jù)充分條件和必要條件的定義可判斷兩者之間的條件關(guān)系.【詳解】當(dāng)時,有,故“”是“”的充分條件.當(dāng)時,有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.本題考查充分必要條件的判斷,可利用定義來判斷,也可以根據(jù)兩個條件構(gòu)成命題及逆命題的真假來判斷,還可以利用兩個條件對應(yīng)的集合的包含關(guān)系來判斷,本題屬于容易題.14.【解析】
不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),根據(jù)題意F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點(diǎn)A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),如圖所示:由題意得:F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長為a,,頂點(diǎn)D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點(diǎn)A到面EDF的距離為,所以,因?yàn)?,所以,解得,故答案為:本題主要考查幾何體的切割問題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運(yùn)算求解的能力,屬于難題,15.【解析】
利用導(dǎo)數(shù)的幾何意義即可解決.【詳解】由已知,,,故.故答案為:.本題考查導(dǎo)數(shù)的幾何意義,要注意在某點(diǎn)的切線與過某點(diǎn)的切線的區(qū)別,本題屬于基礎(chǔ)題.16.【解析】
將四面體補(bǔ)充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補(bǔ)體法,由空間點(diǎn)坐標(biāo)可知,該四面體的四個頂點(diǎn)在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.本題主要考查了四面體外接球的常用求法:補(bǔ)體法,通過補(bǔ)體得到長方體的外接球從而得解,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列.(2)由(1)求得數(shù)列的通項(xiàng)公式,判斷出,由此利用裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.【詳解】(1)所以數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列.(2)由(1)知,∴為常數(shù)列,且,∴,∴∴本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查裂項(xiàng)求和法,屬于中檔題.18.(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)根據(jù),,可得平面,故而平面平面.(Ⅱ)過作于,則可證平面,故為所求角,在中利用余弦定理計算,再計算.【詳解】解:(Ⅰ)因?yàn)椋?,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)過作于,則由平面,且平面知,所以平面,從而是直線與平面所成角.因?yàn)?,,,所以,從?本題考查了面面垂直的判定,考查直線與平面所成角的計算,屬于中檔題.19.(1)直線普通方程:,曲線直角坐標(biāo)方程:;(2).【解析】
(1)消去直線參數(shù)方程中的參數(shù)即可得到其普通方程;將曲線極坐標(biāo)方程化為,根據(jù)極坐標(biāo)和直角坐標(biāo)互化原則可得其直角坐標(biāo)方程;(2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,根據(jù)參數(shù)的幾何意義可知,利用韋達(dá)定理求得結(jié)果.【詳解】(1)由直線參數(shù)方程消去可得普通方程為:曲線極坐標(biāo)方程可化為:則曲線的直角坐標(biāo)方程為:,即(2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,整理可得:設(shè)兩點(diǎn)對應(yīng)的參數(shù)分別為:,則,本題考查極坐標(biāo)與直角坐標(biāo)的互化、參數(shù)方程與普通方程的互化、直線參數(shù)方程中參數(shù)的幾何意義的應(yīng)用;求解距離之和的關(guān)鍵是能夠明確直線參數(shù)方程中參數(shù)的幾何意義,利用韋達(dá)定理來進(jìn)行求解.20.(1)證明見解析;(2)最小值為1【解析】
(1)利用基本不等式可得,再根據(jù)0<xy<1時,即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數(shù),∴|x+z|?|y+z|=(x+z)(y+z)≥=,當(dāng)且僅當(dāng)x=y(tǒng)=z時取等號.又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當(dāng)且僅當(dāng)x=y(tǒng)=z=1時取等號,∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬中檔題.21.(1);(2)或【解析】試題分析:本題主要考查拋物線的標(biāo)準(zhǔn)方程、直線與拋物線的相交問題、直線與圓相切問題等基礎(chǔ)知識,同時考查考生的分析問題解決問題的能力、轉(zhuǎn)化能力、運(yùn)算求解能力以及數(shù)形結(jié)合思想.第一問,設(shè)出直線方程與拋物線方程聯(lián)立,利用韋達(dá)定理得到y(tǒng)1+y2,y1y2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度采光井玻璃更換與維護(hù)合同3篇
- 二零二五年度氣象站氣象數(shù)據(jù)安全保障合同3篇
- 2024蘇州租賃合同含寵物飼養(yǎng)及養(yǎng)護(hù)服務(wù)條款3篇
- 2024版民間借貸合同范例
- 2025年度茶樓裝修工程消防設(shè)施合同范本4篇
- 2025年度10kv配電站施工期間質(zhì)量檢測與驗(yàn)收合同正規(guī)范本3篇
- 2025年度教育機(jī)構(gòu)LOGO知識產(chǎn)權(quán)許可合同范本3篇
- 2025年度智能物流系統(tǒng)全國代理銷售合同4篇
- 2025年度廠房施工合同施工人員培訓(xùn)協(xié)議(新版)3篇
- 2025年度智能工廠改造裝修合同模板3篇
- 小學(xué)四年級數(shù)學(xué)知識點(diǎn)總結(jié)(必備8篇)
- GB/T 893-2017孔用彈性擋圈
- GB/T 11072-1989銻化銦多晶、單晶及切割片
- GB 15831-2006鋼管腳手架扣件
- 醫(yī)學(xué)會自律規(guī)范
- 商務(wù)溝通第二版第4章書面溝通
- 950項(xiàng)機(jī)電安裝施工工藝標(biāo)準(zhǔn)合集(含管線套管、支吊架、風(fēng)口安裝)
- 微生物學(xué)與免疫學(xué)-11免疫分子課件
- 《動物遺傳育種學(xué)》動物醫(yī)學(xué)全套教學(xué)課件
- 弱電工程自檢報告
- 民法案例分析教程(第五版)完整版課件全套ppt教學(xué)教程最全電子教案
評論
0/150
提交評論