版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
浙江省百校2024-2025學年高三下暑假聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.2.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.23.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對任意,,都有,若,則實數(shù)的取值范圍是()A. B. C. D.4.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種5.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.6.古希臘數(shù)學家畢達哥拉斯在公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.7.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.8.若復數(shù)在復平面內(nèi)對應的點在第二象限,則實數(shù)的取值范圍是()A. B. C. D.9.已知,且,則在方向上的投影為()A. B. C. D.10.若不等式在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),則實數(shù)的取值范圍是()A. B.C. D.11.是定義在上的增函數(shù),且滿足:的導函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.12.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.19二、填空題:本題共4小題,每小題5分,共20分。13.西周初數(shù)學家商高在公元前1000年發(fā)現(xiàn)勾股定理的一個特例:勾三,股四,弦五.此發(fā)現(xiàn)早于畢達哥拉斯定理五百到六百年.我們把可以構(gòu)成一個直角三角形三邊的一組正整數(shù)稱為勾股數(shù).現(xiàn)從3,4,5,6,7,8,9,10,11,12,13這11個數(shù)中隨機抽取3個數(shù),則這3個數(shù)能構(gòu)成勾股數(shù)的概率為__________.14.已知滿足且目標函數(shù)的最大值為7,最小值為1,則___________.15.若,,則___________.16.在平面直角坐標系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點P,且點P關于直線x-y=0的對稱點Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的各項都為正數(shù),,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,其中表示不超過x的最大整數(shù),如,,求數(shù)列的前2020項和.18.(12分)設函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關于x的方程能否有三個不同的實根?證明你的結(jié)論.19.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設,,求證:.20.(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點E,F(xiàn)是線段PC中點,G為線段EC中點.Ⅰ求證:平面PBD;Ⅱ求證:.21.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.22.(10分)已知函數(shù).(1)當時,試求曲線在點處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.2.B【解析】
首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關特征求得結(jié)果.3.A【解析】
根據(jù)題意,分析可得函數(shù)的圖象關于對稱且在上為減函數(shù),則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數(shù)為偶函數(shù),所以函數(shù)的圖象關于對稱,因為對任意,,都有,所以函數(shù)在上為減函數(shù),則,解得:.即實數(shù)的取值范圍是.故選:A.本題考查函數(shù)的對稱性與單調(diào)性的綜合應用,涉及不等式的解法,屬于綜合題.4.B【解析】
根據(jù)條件2名內(nèi)科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據(jù)排列組合進行計算即可.【詳解】2名內(nèi)科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于??碱}型.5.A【解析】
首先的單調(diào)性,由此判斷出,由求得的關系式.利用導數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A本小題主要考查利用導數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.6.B【解析】
推導出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.7.B【解析】由題意可得c=,設右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數(shù)的點的軌跡,當和大于兩定點間的距離時,軌跡是橢圓,當和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當和小于兩定點間的距離時,軌跡不存在.8.B【解析】
復數(shù),在復平面內(nèi)對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.本題考查了復數(shù)的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.9.C【解析】
由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關系是解題關鍵.10.C【解析】
由題可知,設函數(shù),,根據(jù)導數(shù)求出的極值點,得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),結(jié)合圖象,可求出實數(shù)的取值范圍.【詳解】設函數(shù),,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數(shù)根;當時,在內(nèi)的解集中僅有三個整數(shù),只需,,所以.故選:C.本題考查不等式的解法和應用問題,還涉及利用導數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時考查數(shù)形結(jié)合思想和解題能力.11.D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.本題考查導數(shù)在函數(shù)單調(diào)性中的應用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設中給出的原函數(shù)與導數(shù)的關系構(gòu)建新函數(shù),本題屬于中檔題.12.B【解析】
計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.本題考查了數(shù)列的相關計算,意在考查學生的計算能力和對于數(shù)列公式方法的綜合應用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由組合數(shù)結(jié)合古典概型求解即可【詳解】從11個數(shù)中隨機抽取3個數(shù)有種不同的方法,其中能構(gòu)成勾股數(shù)的有共三種,所以,所求概率為.故答案為本題考查古典概型與數(shù)學文化,考查組合問題,數(shù)據(jù)處理能力和應用意識.14.-2【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點即可.【詳解】由題意得:目標函數(shù)在點B取得最大值為7,在點A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎題.15.【解析】
因為,所以,又,所以,則,所以.16.【解析】
設圓C1上存在點P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉(zhuǎn)化成兩個新圓有公共點求參數(shù)范圍.【詳解】設圓C1上存在點P(x0,y0)滿足題意,點P關于直線x-y=0的對稱點Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點即可,所以|r-1|≤≤r+1,解得.故答案為:此題考查圓與圓的位置關系,其中涉及點關于直線對稱點問題,兩個圓有公共點的判定方式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)4953【解析】
(Ⅰ)遞推公式變形為,由數(shù)列是正項數(shù)列,得到,根據(jù)數(shù)列是等比數(shù)列求通項公式;(Ⅱ),根據(jù)新定義和對數(shù)的運算分類討論數(shù)列的通項公式,并求前2020項和.【詳解】(Ⅰ)∵,∴,∴又∵數(shù)列的各項都為正數(shù),∴,即.∴數(shù)列是以2為首項,2為公比的等比數(shù)列,∴.(Ⅱ)∵,∴,.∴數(shù)列的前2020項的和為.本題考查根據(jù)數(shù)列的遞推公式求通項公式和數(shù)列的前項和,意在考查轉(zhuǎn)化與化歸的思想,計算能力,屬于中檔題型.18.(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結(jié)合導數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價于對任意恒成立,即時,,利用導數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進行求導,研究單調(diào)性,結(jié)合函數(shù)零點存在性定理證明即可.【詳解】(1),,曲線在點處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當時,對任意,,,,,即在單調(diào)遞增,此時,實數(shù)的取值范圍為.(3)關于的方程不可能有三個不同的實根,以下給出證明:記,,則關于的方程有三個不同的實根,等價于函數(shù)有三個零點,,當時,,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個零點;當時,記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個零點,則至多有兩個單調(diào)區(qū)間,至多有兩個零點.因此,不可能有三個零點.關于的方程不可能有三個不同的實根.本題考查了導數(shù)幾何意義的應用、利用導數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學思想,屬于難題.19.(1).(2)見解析【解析】
(1)由絕對值三解不等式可得,所以當時,,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.本題主要考查絕對值三角不等式及基本不等式的簡單應用,屬于中檔題.20.(1)見解析;(2)見解析.【解析】分析:(1)先證明,再證明FG//平面PBD.(2)先證明平面,再證明BD⊥FG.詳解:證明:(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銷售部月工作計劃
- 應屆生求職自我介紹(匯編15篇)
- 小學2022教學工作計劃(7篇)
- “扣好廉潔從政的第一??圩印敝黝}作文五篇
- 管道施工組織設計方案范本
- 2021學校教師年終工作總結(jié)匯報
- 統(tǒng)計分析軟件SPSS實驗報告
- 同學邀請函集合6篇
- 服裝設計畢業(yè)實習報告合集5篇
- 幼小銜接中大班幼兒家長教育焦慮類型及成因分析
- 鐵路專用線管理模式比較
- (WORD版可修改)JGJ59-2023建筑施工安全檢查標準
- 遷移教學在中學思想政治課中的應用
- ASTM B896-10(2020) 評定電導體材料連接特性的標準試驗方法
- 中國傳統(tǒng)文化中的領導力——曾國藩管理方略ppt課件
- 政府的權力——依法行使
- 最新《西游記》41至60回練習題(有答案)(版權所有,侵權必究)
- EPE氣泡墊檢驗通用標準
- 數(shù)獨比賽“六宮”練習題(96道)練習
- 課程設計整體式肋梁樓蓋設計
- 機械行業(yè)特殊工種目錄
評論
0/150
提交評論