2021-2022學年上海市曹楊第二中學高二上學期期末數(shù)學試題(解析)_第1頁
2021-2022學年上海市曹楊第二中學高二上學期期末數(shù)學試題(解析)_第2頁
2021-2022學年上海市曹楊第二中學高二上學期期末數(shù)學試題(解析)_第3頁
2021-2022學年上海市曹楊第二中學高二上學期期末數(shù)學試題(解析)_第4頁
2021-2022學年上海市曹楊第二中學高二上學期期末數(shù)學試題(解析)_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年上海市曹楊第二中學高二上學期期末數(shù)學試題一、單選題1.已知點在平面α上,其法向量,則下列點不在平面α上的是(

)A. B. C. D.【答案】D【分析】根據(jù)法向量的定義,利用向量垂直對四個選項一一驗證即可.【詳解】對于A:記,則.因為,所以點在平面α上對于B:記,則.因為,所以點在平面α上對于C:記,則.因為,所以點在平面α上對于D:記,則.因為,所以點不在平面α上.故選:D2.實數(shù)且,,則連接,兩點的直線與圓C:的位置關系是(

)A.相離 B.相切C.相交 D.不能確定【答案】B【解析】由題意知,m,n是方程的根,再根據(jù)兩點式求出直線方程,利用圓心到直線的距離與半徑之間的關系即可求解.【詳解】由題意知,m,n是方程的根,,,過,兩點的直線方程為:,圓心到直線的距離為:,故直線和圓相切,故選:B【點睛】本題考查了直線與圓的位置關系,考查了計算求解能力,屬于基礎題.3.某學校隨機抽取了部分學生,對他們每周使用手機的時間進行統(tǒng)計,得到如下的頻率分布直方圖.則下列說法:①;②若抽取100人,則平均用時13.75小時;③若從每周使用時間在,,三組內的學生中用分層抽樣的方法選取8人進行訪談,則應從使用時間在內的學生中選取的人數(shù)為3.其中正確的序號是(

)A.①② B.①③ C.②③ D.①②③【答案】B【分析】根據(jù)頻率分布直方圖中小矩形的面積和為1可求出,再求出頻率分布直方圖的平均值,即為抽取100人的平均值的估計值,再利用分層抽樣可確定出使用時間在內的學生中選取的人數(shù)為3.【詳解】,故①正確;根據(jù)頻率分布直方圖可估計出平均值為,所以估計抽取100人的平均用時13.75小時,②的說法太絕對,故②錯誤;每周使用時間在,,三組內的學生的比例為,用分層抽樣的方法選取8人進行訪談,則應從使用時間在內的學生中選取的人數(shù)為,故③正確.故選:B.4.連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,記,則下列說法正確的是(

)A.事件“”的概率為 B.事件“t是奇數(shù)”與“”互為對立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為【答案】D【分析】計算出事件“t=12”的概率可判斷A;根據(jù)對立事件的概念,可判斷B;根據(jù)互斥事件的概念,可判斷C;計算出事件“t>8且mn<32”的概率可判斷D;【詳解】連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,則共有個基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點,則事件“t=12”的概率為,故A錯誤;事件“t是奇數(shù)”與“m=n”為互斥不對立事件,如事件m=3,n=5,故B錯誤;事件“t=2”與“t≠3”不是互斥事件,故C錯誤;事件“t>8且mn<32”有共9個基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D.二、填空題5.直線的傾斜角為______.【答案】【分析】把直線方程化為斜截式,再利用斜率與傾斜角的關系即可得出.【詳解】設直線的傾斜角為.由直線化為,故,又,故,故答案為.【點睛】一般地,如果直線方程的一般式為,那么直線的斜率為,且,其中為直線的傾斜角,注意它的范圍是.6.數(shù)據(jù):1,1,3,4,6的方差是______.【答案】3.6【分析】先計算平均數(shù),再計算方差.【詳解】該組數(shù)據(jù)的平均數(shù)為,方差為故答案為:7.已知三角形OAB頂點,,,則過B點的中線長為______.【答案】【分析】先求出中點坐標,再由距離公式得出過B點的中線長.【詳解】由中點坐標公式可得中點,則過B點的中線長為.故答案為:8.用一個平面去截半徑為5cm的球,截面面積是則球心到截面的距離為_______.【答案】4cm【分析】根據(jù)圓的面積公式算出截面圓的半徑,利用球的截面圓性質與勾股定理算出球心到截面的距離.【詳解】解:設截面圓的半徑為r,截面的面積是,,可得.又球的半徑為5cm,根據(jù)球的截面圓性質,可得截面到球心的距離為.故答案為:4cm.【點睛】本題主要考查了球的截面圓性質、勾股定理等知識,考查了空間想象能力,屬于基礎題.9.若圓心坐標為的圓被直線截得的弦長為,則圓的半徑為______.【答案】【分析】利用垂徑定理計算即可.【詳解】設圓的半徑為,則,得.故答案為:.10.如圖是用斜二測畫法畫出的水平放置的正三角形ABC的直觀圖,其中,則三角形的面積為______.【答案】【分析】根據(jù)直觀圖和平面圖的關系可求出,進而利用面積公式可得三角形的面積【詳解】由已知可得則故答案為:.11.已知是定義在上的奇函數(shù),當時,則當時___________.【答案】【分析】當時,利用及求得函數(shù)的解析式.【詳解】當時,,由于函數(shù)是奇函數(shù),故.【點睛】本小題主要考查已知函數(shù)的奇偶性以及軸一側的解析式,求另一側的解析式,屬于基礎題.12.甲、乙兩名運動員5場比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則甲、乙兩組數(shù)據(jù)的中位數(shù)是______.【答案】【分析】先由極差以及平均數(shù)得出,進而得出中位數(shù).【詳解】由可得,,,因為乙得分的平均值為24,所以,所以甲、乙兩組數(shù)據(jù)的中位數(shù)是.故答案為:13.已知正三棱臺上、下底面邊長分別為1和2,高為1,則這個正三棱臺的體積為______.【答案】【分析】先計算兩個底面的面積,再由體積公式計算即可.【詳解】上底面的面積為,下底面的面積為,則這個正三棱臺的體積為.故答案為:14.如圖,SD是球O的直徑,A、B、C是球O表面上的三個不同的點,,當三棱錐的底面是邊長為3的正三角形時,則球O的半徑為______.【答案】【分析】由三棱錐是正三棱錐,利用正弦定理得出三角形外接圓的半徑,進而求出,再由余弦定理得出球O的半徑.【詳解】因為,所以平面,三棱錐是正三棱錐,設為三角形外接圓的圓心,則在上,連接,,由得出,所以,在中,,即,解得,則球O的半徑為.故答案為:15.設在中,角A、B、C所對的邊分別為a、b、c,從下列四個條件:①;②;③;④中選出三個條件,能使?jié)M足所選條件的存在且唯一的所有c的值為______.【答案】,,【分析】由①②結合正弦定理可求出,但是角不唯一,故所選條件中不能同時有①②,只能是①③④或②③④,若選①③④,結合余弦定理可求,若選②③④,結合正弦定理即可求解【詳解】由①②結合正弦定理,所以,此時角不唯一,所以故所選條件中不能同時有①②,所以只能是①③④或②③④,若選①③④,即,,,由余弦定理可得,解得,若選②③④,即,,,因為,,所以,由正弦定理得,,故答案為:,16.設數(shù)列的前n項和為,且是6和的等差中項,若對任意的,都有,則的最小值為________.【答案】【分析】先根據(jù)和項與通項關系得通項公式,再根據(jù)等比數(shù)列求和公式得,再根據(jù)函數(shù)單調性得取值范圍,即得取值范圍,解得結果.【詳解】因為是6和的等差中項,所以當時,當時,因此當為偶數(shù)時,當為奇數(shù)時,因此因為在上單調遞增,所以故答案為:【點睛】本題考查根據(jù)和項求通項、等比數(shù)列定義、等比數(shù)列求和公式、利用函數(shù)單調性求值域,考查綜合分析求解能力,屬較難題.三、解答題17.已知圓C經(jīng)過、兩點,且圓心在直線上.(1)求圓C的方程;(2)若直線經(jīng)過點且與圓C相切,求直線的方程.【答案】(1);(2)【解析】【詳解】試題分析:(1)根據(jù)圓心在弦的垂直平分線上,先求出弦的垂直平分線的方程與聯(lián)立可求得圓心坐標,再用兩點間的距離公式求得半徑,進而求得圓的方程;(2)當直線斜率不存在時,與圓相切,方程為;當直線斜率存在時,設斜率為,寫出其點斜式方程,利用圓心到直線的距離等于半徑建立方程求解出的值.試題解析:(1)依題意知線段的中點坐標是,直線的斜率為,故線段的中垂線方程是即,解方程組得,即圓心的坐標為,圓的半徑,故圓的方程是(2)若直線斜率不存在,則直線方程是,與圓相離,不合題意;若直線斜率存在,可設直線方程是,即,因為直線與圓相切,所以有,解得或.所以直線的方程是或.18.如圖,幾何體是圓柱的一部分,它是由矩形(及其內部)以邊所在直線為旋轉軸旋轉得到的封閉圖形.(1)設,,求這個幾何體的表面積;(2)設G是弧DF的中點,設P是弧CE上的一點,且.求異面直線AG與BP所成角的大小.【答案】(1)(2)【分析】(1)將幾何體的表面積分成上下兩個扇形、兩個矩形和一個圓柱形側面的一部分組成,分別求出后相加即可;(2)先根據(jù)條件得到面,通過平移將異面直線轉化為同一個平面內的直線夾角即可(1)上下兩個扇形的面積之和為:兩個矩形面積之和為:4側面圓弧段的面積為:故這個幾何體的表面積為:(2)如下圖,將直線平移到下底面上為由,且,,可得:面則而G是弧DF的中點,則由于上下兩個平面平行且全等,則直線與直線的夾角等于直線與直線的夾角,即為所求,則則直線與直線的夾角為19.如圖,水平桌面上放置一個棱長為4的正方體的水槽,水面高度恰為正方體棱長的一半,在該正方體側面有一個小孔(小孔的大小忽略不計)E,E點到CD的距離為3,若該正方體水槽繞CD傾斜(CD始終在桌面上).(1)證明圖2中的水面也是平行四邊形;(2)當水恰好流出時,側面與桌面所成的角的大小.【答案】(1)證明見解析(2)【分析】(1)由水的體積得出,進而得出,,從而證明圖2中的水面也是平行四邊形;(2)在平面內,過點作,交于,由四邊形是平行四邊形,得出側面與桌面所成的角即側面與水面所成的角,再由直角三角形的邊角關系得出其夾角.(1)由題意知,水的體積為,如圖所示,設正方體水槽傾斜后,水面分別與棱,,,交于,,,,則,水的體積為,,即,.,故四邊形為平行四邊形,即,且又,,,四邊形為平行四邊形,即圖2中的水面也是平行四邊形;(2)在平面內,過點作,交于,則四邊形是平行四邊形,,,側面與桌面所成的角即側面與水面所成的角,即側面與平面所成的角,即為所求,而,在中,,側面與桌面所成角的為.20.已知數(shù)列滿足,,,n為正整數(shù).(1)證明:數(shù)列是等比數(shù)列,并求通項公式;(2)證明:數(shù)列中的任意三項,,都不成等差數(shù)列;(3)若關于正整數(shù)n的不等式的解集中有且僅有三個元素,求實數(shù)m的取值范圍;【答案】(1)證明見解析;(2)證明見解析(3)【分析】(1)將所給等式變形為,根據(jù)等比數(shù)列的定義即可證明結論;(2)假設存在,,成等差數(shù)列,根據(jù)等差數(shù)列的性質可推出矛盾,故說明假設錯誤。從而證明原結論;(3)求出n=1,2,3,4時的情況,再結合時,,即可求得結果.(1)由已知可知,顯然有,否則數(shù)列不可能是等比數(shù)列;因為,,故可得,由得:,即有,所以數(shù)列是等比數(shù)列,且;(2)假設存在,,成等差數(shù)列,則,即,整理得,即,而是奇數(shù),故上式左側是奇數(shù),右側是一個偶數(shù),不可能相等,故數(shù)列中的任意三項,,都不成等差數(shù)列;(3)關于正整數(shù)n的不等式,即,當n=1時,;當n=2時,;當n=3時,;當n=4時,,并且當時,,因關于正整數(shù)n的不等式的解集中有且僅有三個元素,故.21.已知直線,圓.(1)證明:直線l與圓C相交;(2)設l與C的兩個交點分別為A、B,弦AB的中點為M,求點M的軌跡方程;(3)在(2)的條件下,設圓C在點A處的切線為,在點B處的切線為,與的交點為Q.試探究:當m變化時,點Q是否恒在一條定直線上?若是,請求出這條直線的方程;若不是,說明理由.【答案】(1)證明見解析;(2);(3)點Q恒在直線上,理由見解析.【分析】(1)求出直線過定點,得到在圓內部,故證明直線l與圓C相交;(2)設出點,利用垂直得到等量關系,整理后即為軌跡方程;(3)利用Q、A、B、C四點共圓,得到此圓的方程,聯(lián)立,求出相交弦的方程,即直線的方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論