2021-2022學(xué)年上海市曹楊第二中學(xué)高二上學(xué)期期末數(shù)學(xué)試題(解析)_第1頁
2021-2022學(xué)年上海市曹楊第二中學(xué)高二上學(xué)期期末數(shù)學(xué)試題(解析)_第2頁
2021-2022學(xué)年上海市曹楊第二中學(xué)高二上學(xué)期期末數(shù)學(xué)試題(解析)_第3頁
2021-2022學(xué)年上海市曹楊第二中學(xué)高二上學(xué)期期末數(shù)學(xué)試題(解析)_第4頁
2021-2022學(xué)年上海市曹楊第二中學(xué)高二上學(xué)期期末數(shù)學(xué)試題(解析)_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022學(xué)年上海市曹楊第二中學(xué)高二上學(xué)期期末數(shù)學(xué)試題一、單選題1.已知點在平面α上,其法向量,則下列點不在平面α上的是(

)A. B. C. D.【答案】D【分析】根據(jù)法向量的定義,利用向量垂直對四個選項一一驗證即可.【詳解】對于A:記,則.因為,所以點在平面α上對于B:記,則.因為,所以點在平面α上對于C:記,則.因為,所以點在平面α上對于D:記,則.因為,所以點不在平面α上.故選:D2.實數(shù)且,,則連接,兩點的直線與圓C:的位置關(guān)系是(

)A.相離 B.相切C.相交 D.不能確定【答案】B【解析】由題意知,m,n是方程的根,再根據(jù)兩點式求出直線方程,利用圓心到直線的距離與半徑之間的關(guān)系即可求解.【詳解】由題意知,m,n是方程的根,,,過,兩點的直線方程為:,圓心到直線的距離為:,故直線和圓相切,故選:B【點睛】本題考查了直線與圓的位置關(guān)系,考查了計算求解能力,屬于基礎(chǔ)題.3.某學(xué)校隨機(jī)抽取了部分學(xué)生,對他們每周使用手機(jī)的時間進(jìn)行統(tǒng)計,得到如下的頻率分布直方圖.則下列說法:①;②若抽取100人,則平均用時13.75小時;③若從每周使用時間在,,三組內(nèi)的學(xué)生中用分層抽樣的方法選取8人進(jìn)行訪談,則應(yīng)從使用時間在內(nèi)的學(xué)生中選取的人數(shù)為3.其中正確的序號是(

)A.①② B.①③ C.②③ D.①②③【答案】B【分析】根據(jù)頻率分布直方圖中小矩形的面積和為1可求出,再求出頻率分布直方圖的平均值,即為抽取100人的平均值的估計值,再利用分層抽樣可確定出使用時間在內(nèi)的學(xué)生中選取的人數(shù)為3.【詳解】,故①正確;根據(jù)頻率分布直方圖可估計出平均值為,所以估計抽取100人的平均用時13.75小時,②的說法太絕對,故②錯誤;每周使用時間在,,三組內(nèi)的學(xué)生的比例為,用分層抽樣的方法選取8人進(jìn)行訪談,則應(yīng)從使用時間在內(nèi)的學(xué)生中選取的人數(shù)為,故③正確.故選:B.4.連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,記,則下列說法正確的是(

)A.事件“”的概率為 B.事件“t是奇數(shù)”與“”互為對立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為【答案】D【分析】計算出事件“t=12”的概率可判斷A;根據(jù)對立事件的概念,可判斷B;根據(jù)互斥事件的概念,可判斷C;計算出事件“t>8且mn<32”的概率可判斷D;【詳解】連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,則共有個基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點,則事件“t=12”的概率為,故A錯誤;事件“t是奇數(shù)”與“m=n”為互斥不對立事件,如事件m=3,n=5,故B錯誤;事件“t=2”與“t≠3”不是互斥事件,故C錯誤;事件“t>8且mn<32”有共9個基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D.二、填空題5.直線的傾斜角為______.【答案】【分析】把直線方程化為斜截式,再利用斜率與傾斜角的關(guān)系即可得出.【詳解】設(shè)直線的傾斜角為.由直線化為,故,又,故,故答案為.【點睛】一般地,如果直線方程的一般式為,那么直線的斜率為,且,其中為直線的傾斜角,注意它的范圍是.6.?dāng)?shù)據(jù):1,1,3,4,6的方差是______.【答案】3.6【分析】先計算平均數(shù),再計算方差.【詳解】該組數(shù)據(jù)的平均數(shù)為,方差為故答案為:7.已知三角形OAB頂點,,,則過B點的中線長為______.【答案】【分析】先求出中點坐標(biāo),再由距離公式得出過B點的中線長.【詳解】由中點坐標(biāo)公式可得中點,則過B點的中線長為.故答案為:8.用一個平面去截半徑為5cm的球,截面面積是則球心到截面的距離為_______.【答案】4cm【分析】根據(jù)圓的面積公式算出截面圓的半徑,利用球的截面圓性質(zhì)與勾股定理算出球心到截面的距離.【詳解】解:設(shè)截面圓的半徑為r,截面的面積是,,可得.又球的半徑為5cm,根據(jù)球的截面圓性質(zhì),可得截面到球心的距離為.故答案為:4cm.【點睛】本題主要考查了球的截面圓性質(zhì)、勾股定理等知識,考查了空間想象能力,屬于基礎(chǔ)題.9.若圓心坐標(biāo)為的圓被直線截得的弦長為,則圓的半徑為______.【答案】【分析】利用垂徑定理計算即可.【詳解】設(shè)圓的半徑為,則,得.故答案為:.10.如圖是用斜二測畫法畫出的水平放置的正三角形ABC的直觀圖,其中,則三角形的面積為______.【答案】【分析】根據(jù)直觀圖和平面圖的關(guān)系可求出,進(jìn)而利用面積公式可得三角形的面積【詳解】由已知可得則故答案為:.11.已知是定義在上的奇函數(shù),當(dāng)時,則當(dāng)時___________.【答案】【分析】當(dāng)時,利用及求得函數(shù)的解析式.【詳解】當(dāng)時,,由于函數(shù)是奇函數(shù),故.【點睛】本小題主要考查已知函數(shù)的奇偶性以及軸一側(cè)的解析式,求另一側(cè)的解析式,屬于基礎(chǔ)題.12.甲、乙兩名運(yùn)動員5場比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則甲、乙兩組數(shù)據(jù)的中位數(shù)是______.【答案】【分析】先由極差以及平均數(shù)得出,進(jìn)而得出中位數(shù).【詳解】由可得,,,因為乙得分的平均值為24,所以,所以甲、乙兩組數(shù)據(jù)的中位數(shù)是.故答案為:13.已知正三棱臺上、下底面邊長分別為1和2,高為1,則這個正三棱臺的體積為______.【答案】【分析】先計算兩個底面的面積,再由體積公式計算即可.【詳解】上底面的面積為,下底面的面積為,則這個正三棱臺的體積為.故答案為:14.如圖,SD是球O的直徑,A、B、C是球O表面上的三個不同的點,,當(dāng)三棱錐的底面是邊長為3的正三角形時,則球O的半徑為______.【答案】【分析】由三棱錐是正三棱錐,利用正弦定理得出三角形外接圓的半徑,進(jìn)而求出,再由余弦定理得出球O的半徑.【詳解】因為,所以平面,三棱錐是正三棱錐,設(shè)為三角形外接圓的圓心,則在上,連接,,由得出,所以,在中,,即,解得,則球O的半徑為.故答案為:15.設(shè)在中,角A、B、C所對的邊分別為a、b、c,從下列四個條件:①;②;③;④中選出三個條件,能使?jié)M足所選條件的存在且唯一的所有c的值為______.【答案】,,【分析】由①②結(jié)合正弦定理可求出,但是角不唯一,故所選條件中不能同時有①②,只能是①③④或②③④,若選①③④,結(jié)合余弦定理可求,若選②③④,結(jié)合正弦定理即可求解【詳解】由①②結(jié)合正弦定理,所以,此時角不唯一,所以故所選條件中不能同時有①②,所以只能是①③④或②③④,若選①③④,即,,,由余弦定理可得,解得,若選②③④,即,,,因為,,所以,由正弦定理得,,故答案為:,16.設(shè)數(shù)列的前n項和為,且是6和的等差中項,若對任意的,都有,則的最小值為________.【答案】【分析】先根據(jù)和項與通項關(guān)系得通項公式,再根據(jù)等比數(shù)列求和公式得,再根據(jù)函數(shù)單調(diào)性得取值范圍,即得取值范圍,解得結(jié)果.【詳解】因為是6和的等差中項,所以當(dāng)時,當(dāng)時,因此當(dāng)為偶數(shù)時,當(dāng)為奇數(shù)時,因此因為在上單調(diào)遞增,所以故答案為:【點睛】本題考查根據(jù)和項求通項、等比數(shù)列定義、等比數(shù)列求和公式、利用函數(shù)單調(diào)性求值域,考查綜合分析求解能力,屬較難題.三、解答題17.已知圓C經(jīng)過、兩點,且圓心在直線上.(1)求圓C的方程;(2)若直線經(jīng)過點且與圓C相切,求直線的方程.【答案】(1);(2)【解析】【詳解】試題分析:(1)根據(jù)圓心在弦的垂直平分線上,先求出弦的垂直平分線的方程與聯(lián)立可求得圓心坐標(biāo),再用兩點間的距離公式求得半徑,進(jìn)而求得圓的方程;(2)當(dāng)直線斜率不存在時,與圓相切,方程為;當(dāng)直線斜率存在時,設(shè)斜率為,寫出其點斜式方程,利用圓心到直線的距離等于半徑建立方程求解出的值.試題解析:(1)依題意知線段的中點坐標(biāo)是,直線的斜率為,故線段的中垂線方程是即,解方程組得,即圓心的坐標(biāo)為,圓的半徑,故圓的方程是(2)若直線斜率不存在,則直線方程是,與圓相離,不合題意;若直線斜率存在,可設(shè)直線方程是,即,因為直線與圓相切,所以有,解得或.所以直線的方程是或.18.如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的封閉圖形.(1)設(shè),,求這個幾何體的表面積;(2)設(shè)G是弧DF的中點,設(shè)P是弧CE上的一點,且.求異面直線AG與BP所成角的大小.【答案】(1)(2)【分析】(1)將幾何體的表面積分成上下兩個扇形、兩個矩形和一個圓柱形側(cè)面的一部分組成,分別求出后相加即可;(2)先根據(jù)條件得到面,通過平移將異面直線轉(zhuǎn)化為同一個平面內(nèi)的直線夾角即可(1)上下兩個扇形的面積之和為:兩個矩形面積之和為:4側(cè)面圓弧段的面積為:故這個幾何體的表面積為:(2)如下圖,將直線平移到下底面上為由,且,,可得:面則而G是弧DF的中點,則由于上下兩個平面平行且全等,則直線與直線的夾角等于直線與直線的夾角,即為所求,則則直線與直線的夾角為19.如圖,水平桌面上放置一個棱長為4的正方體的水槽,水面高度恰為正方體棱長的一半,在該正方體側(cè)面有一個小孔(小孔的大小忽略不計)E,E點到CD的距離為3,若該正方體水槽繞CD傾斜(CD始終在桌面上).(1)證明圖2中的水面也是平行四邊形;(2)當(dāng)水恰好流出時,側(cè)面與桌面所成的角的大小.【答案】(1)證明見解析(2)【分析】(1)由水的體積得出,進(jìn)而得出,,從而證明圖2中的水面也是平行四邊形;(2)在平面內(nèi),過點作,交于,由四邊形是平行四邊形,得出側(cè)面與桌面所成的角即側(cè)面與水面所成的角,再由直角三角形的邊角關(guān)系得出其夾角.(1)由題意知,水的體積為,如圖所示,設(shè)正方體水槽傾斜后,水面分別與棱,,,交于,,,,則,水的體積為,,即,.,故四邊形為平行四邊形,即,且又,,,四邊形為平行四邊形,即圖2中的水面也是平行四邊形;(2)在平面內(nèi),過點作,交于,則四邊形是平行四邊形,,,側(cè)面與桌面所成的角即側(cè)面與水面所成的角,即側(cè)面與平面所成的角,即為所求,而,在中,,側(cè)面與桌面所成角的為.20.已知數(shù)列滿足,,,n為正整數(shù).(1)證明:數(shù)列是等比數(shù)列,并求通項公式;(2)證明:數(shù)列中的任意三項,,都不成等差數(shù)列;(3)若關(guān)于正整數(shù)n的不等式的解集中有且僅有三個元素,求實數(shù)m的取值范圍;【答案】(1)證明見解析;(2)證明見解析(3)【分析】(1)將所給等式變形為,根據(jù)等比數(shù)列的定義即可證明結(jié)論;(2)假設(shè)存在,,成等差數(shù)列,根據(jù)等差數(shù)列的性質(zhì)可推出矛盾,故說明假設(shè)錯誤。從而證明原結(jié)論;(3)求出n=1,2,3,4時的情況,再結(jié)合時,,即可求得結(jié)果.(1)由已知可知,顯然有,否則數(shù)列不可能是等比數(shù)列;因為,,故可得,由得:,即有,所以數(shù)列是等比數(shù)列,且;(2)假設(shè)存在,,成等差數(shù)列,則,即,整理得,即,而是奇數(shù),故上式左側(cè)是奇數(shù),右側(cè)是一個偶數(shù),不可能相等,故數(shù)列中的任意三項,,都不成等差數(shù)列;(3)關(guān)于正整數(shù)n的不等式,即,當(dāng)n=1時,;當(dāng)n=2時,;當(dāng)n=3時,;當(dāng)n=4時,,并且當(dāng)時,,因關(guān)于正整數(shù)n的不等式的解集中有且僅有三個元素,故.21.已知直線,圓.(1)證明:直線l與圓C相交;(2)設(shè)l與C的兩個交點分別為A、B,弦AB的中點為M,求點M的軌跡方程;(3)在(2)的條件下,設(shè)圓C在點A處的切線為,在點B處的切線為,與的交點為Q.試探究:當(dāng)m變化時,點Q是否恒在一條定直線上?若是,請求出這條直線的方程;若不是,說明理由.【答案】(1)證明見解析;(2);(3)點Q恒在直線上,理由見解析.【分析】(1)求出直線過定點,得到在圓內(nèi)部,故證明直線l與圓C相交;(2)設(shè)出點,利用垂直得到等量關(guān)系,整理后即為軌跡方程;(3)利用Q、A、B、C四點共圓,得到此圓的方程,聯(lián)立,求出相交弦的方程,即直線的方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論