2025屆甘肅省靜寧縣一中高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2025屆甘肅省靜寧縣一中高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2025屆甘肅省靜寧縣一中高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2025屆甘肅省靜寧縣一中高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2025屆甘肅省靜寧縣一中高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆甘肅省靜寧縣一中高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知扇形的圓心角為,面積為,則扇形的弧長等于(

)A. B.C. D.2.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件3.已知函數(shù)的最小正周期,且是函數(shù)的一條對稱軸,是函數(shù)的一個對稱中心,則函數(shù)在上的取值范圍是()A. B.C. D.4.若不等式的解集為,那么不等式的解集為()A. B.或C. D.或5.下列四個函數(shù)中,以為最小正周期,且在區(qū)間上為減函數(shù)的是A. B.C. D.6.函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間上有零點,則的取值范圍是A. B.C. D.7.若函數(shù)y=f(x)圖象上存在不同的兩點A,B關(guān)于y軸對稱,則稱點對[A,B]是函數(shù)y=f(x)的一對“黃金點對”(注:點對[A,B]與[B,A]可看作同一對“黃金點對”).已知函數(shù)f(x)=,則此函數(shù)的“黃金點對“有()A.0對 B.1對C.2對 D.3對8.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過x的最大整數(shù),則稱為高斯函數(shù)例如:,,已知函數(shù),則函數(shù)的值域為()A. B.C.1, D.1,2,9.A B.C.1 D.10.下表是某次測量中兩個變量的一組數(shù)據(jù),若將表示為關(guān)于的函數(shù),則最可能的函數(shù)模型是234567890.631.011.261.461.631.771.891.99A.一次函數(shù)模型 B.二次函數(shù)模型C.指數(shù)函數(shù)模型 D.對數(shù)函數(shù)模型二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的圖像與直線y=a在(0,)上有三個交點,其橫坐標(biāo)分別為,,,則的取值范圍為_______.12.函數(shù)的反函數(shù)是___________.13.已知滿足任意都有成立,那么的取值范圍是___________.14.已知樣本,,…,的平均數(shù)為5,方差為3,則樣本,,…,的平均數(shù)與方差的和是_____15.寫出一個滿足,且的函數(shù)的解析式__________16.在平行四邊形中,為上的中點,若與對角線相交于,且,則__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,函數(shù).(1)求的定義域;(2)若在上的最小值為,求的值.18.如圖,一個半徑為4米的筒車按逆時針方向每分鐘轉(zhuǎn)1圈,筒車的軸心O距水面的高度為2米.設(shè)筒車上的某個盛水筒W到水面的距離為d(單位:米)(在水面下則d為負(fù)數(shù)).若以盛水筒W剛浮出水面時開始計算時間,則d與時間t(單位:分鐘)之間的關(guān)系為.(1)求的值;(2)求盛水筒W出水后至少經(jīng)過多少時間就可到達(dá)最高點?(3)某時刻(單位:分鐘)時,盛水筒W在過O點的豎直直線的左側(cè),到水面的距離為5米,再經(jīng)過分鐘后,盛水筒W是否在水中?19.(1)化簡:(2)求值:20.若函數(shù)是定義在實數(shù)集上的奇函數(shù),并且在區(qū)間上是單調(diào)遞增的函數(shù).(1)研究并證明函數(shù)在區(qū)間上的單調(diào)性;(2)若實數(shù)滿足不等式,求實數(shù)的取值范圍.21.求函數(shù)的最小正周期

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)圓心角可以得出弧長與半徑的關(guān)系,根據(jù)面積公式可得出弧長【詳解】由題意可得,所以【點睛】本題考查扇形的面積公式、弧長公式,屬于基礎(chǔ)題2、A【解析】由與互相推出的情況結(jié)合選項判斷出答案【詳解】,由可以推出,而不能推出則“”是“”的充分而不必要條件故選:A3、B【解析】依題意求出的解析式,再根據(jù)x的取值范圍,求出的范圍,再根據(jù)正弦函數(shù)的性質(zhì)計算可得.【詳解】函數(shù)的最小正周期,∴,解得:,由于是函數(shù)的一條對稱軸,且為的一個對稱中心,∴,(),則,(),則,又∵,,由于,∴,故,∵,∴,∴,∴.故選:B4、C【解析】根據(jù)題意,直接求解即可.【詳解】根據(jù)題意,由,得,因為不等式的解集為,所以由,知,解得,故不等式的解集為.故選:C.5、A【解析】最小正周期,且在區(qū)間上為減函數(shù),適合;最小正周期為,不適合;最小正周期為,在區(qū)間上不單調(diào),不適合;最小正周期為,在區(qū)間上為增函數(shù),不適合.故選A6、C【解析】分析:結(jié)合余弦函數(shù)的單調(diào)減區(qū)間,求出零點,再結(jié)合零點范圍列出不等式詳解:當(dāng),,又∵,則,即,,由得,,∴,解得,綜上.故選C.點睛:余弦函數(shù)的單調(diào)減區(qū)間:,增區(qū)間:,零點:,對稱軸:,對稱中心:,.7、D【解析】根據(jù)“黃金點對“,只需要先求出當(dāng)x<0時函數(shù)f(x)關(guān)于y軸對稱的函數(shù)的解析式,再作出函數(shù)的圖象,利用兩個圖象交點個數(shù)進(jìn)行求解即可【詳解】由題意知函數(shù)f(x)=2x,x<0關(guān)于y軸對稱的函數(shù)為,x>0,作出函數(shù)f(x)和,x>0的圖象,由圖象知當(dāng)x>0時,f(x)和y=()x,x>0的圖象有3個交點所以函數(shù)f(x)的““黃金點對“有3對故選D【點睛】本題主要考查分段函數(shù)的應(yīng)用,結(jié)合“黃金點對“的定義,求出當(dāng)x<0時函數(shù)f(x)關(guān)于y軸對稱的函數(shù)的解析式,作出函數(shù)的圖象,利用數(shù)形結(jié)合是解決本題的關(guān)鍵8、C【解析】由分式函數(shù)值域的求法得:,又,所以,由高斯函數(shù)定義的理解得:函數(shù)的值域為,得解【詳解】解:因為,所以,又,所以,由高斯函數(shù)的定義可得:函數(shù)的值域為,故選C【點睛】本題考查了分式函數(shù)值域的求法及對新定義的理解,屬中檔題9、A【解析】由題意可得:本題選擇A選項.10、D【解析】對于,由于均勻增加,而值不是均勻遞增,不是一次函數(shù)模型;對于,由于該函數(shù)是單調(diào)遞增,不是二次函數(shù)模型;對于,過不是指數(shù)函數(shù)模型,故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由x∈(0,)求出,然后,畫出正弦函數(shù)的大致圖像,利用圖像求解即可【詳解】由題意因為x∈(0,),則,可畫出函數(shù)大致的圖則由圖可知當(dāng)時,方程有三個根,由解得,解得,且點與點關(guān)于直線對稱,所以,點與點關(guān)于直線對稱,故由圖得,令,當(dāng)為x∈(0,)時,解得或,所以,,,解得,,則,即.故答案為:【點睛】關(guān)鍵點睛:解題關(guān)鍵在于利用x∈(0,),則畫出圖像,并利用對稱性求出答案12、;【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)直接求解.【詳解】因為,所以,即的反函數(shù)為,故答案為:13、【解析】由題意可知,分段函數(shù)在上單調(diào)遞減,因此分段函數(shù)的每一段都是單調(diào)遞減,且左邊一段的最小值不小于右邊的最大值,即可得到實數(shù)的取值范圍.【詳解】由任意都有成立,可知函數(shù)在上單調(diào)遞減,又因,所以,解得.故答案為:.14、23【解析】利用期望、方差的性質(zhì),根據(jù)已知數(shù)據(jù)的期望和方差求新數(shù)據(jù)的期望和方差.【詳解】由題設(shè),,,所以,.故平均數(shù)與方差的和是23.故答案為:23.15、(答案不唯一)【解析】根據(jù)題意可知函數(shù)關(guān)于對稱,寫出一個關(guān)于對稱函數(shù),再檢驗滿足即可.【詳解】由,可知函數(shù)關(guān)于對稱,所以,又,滿足.所以函數(shù)的解析式為(答案不唯一).故答案為:(答案不唯一).16、3【解析】由題意如圖:根據(jù)平行線分線段成比例定理,可知,又因為,所以根據(jù)三角形相似判定方法可以知道∵為的中點∴相似比為∴∴故答案為3三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題意,函數(shù)的解析式有意義,列出不等式組,即可求解函數(shù)的定義域;(2)由題意,化簡得,設(shè),根據(jù)復(fù)合函數(shù)性質(zhì),分類討論得到函數(shù)的單調(diào)性,得出函數(shù)最值的表達(dá)式,即可求解【詳解】(1)由題意,函數(shù),滿足,解得,即函數(shù)的定義域為(2)由,設(shè),則表示開口向下,對稱軸的方程為,所以在上為單調(diào)遞增函數(shù),在單調(diào)遞減,根據(jù)復(fù)合函數(shù)的單調(diào)性,可得因為,函數(shù)在為單調(diào)遞增函數(shù),在單調(diào)遞減,所以,解得;故實數(shù)的值為【點睛】本題主要考查了對數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用,以及與對數(shù)函數(shù)復(fù)合函數(shù)的最值問題,其中解答中熟記對數(shù)函數(shù)的圖象與性質(zhì),合理分類討論求解是解答本題的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題18、(1);(2)分鐘;(3)再經(jīng)過分鐘后盛水筒不在水中.【解析】(1)先結(jié)合題設(shè)條件得到,,求得,再利用初始值計算初相即可;(2)根據(jù)盛水筒達(dá)到最高點時,代入計算t值,再根據(jù),得到最少時間即可;(3)先計算時,根據(jù)題意,利用同角三角函數(shù)的平方關(guān)系求,再由分鐘后,進(jìn)而計算d值并判斷正負(fù),即得結(jié)果.【詳解】解:(1)由題意知,,即,所以,由題意半徑為4米,筒車的軸心O距水面的高度為2米,可得:,當(dāng)時,,代入得,,因為,所以;(2)由(1)知:,盛水筒達(dá)到最高點時,,當(dāng)時,,所以,所以,解得,因為,所以,當(dāng)時,,所以盛水筒出水后至少經(jīng)過分鐘就可達(dá)到最高點;(3)由題知:,即,由題意,盛水筒W在過O點的豎直直線的左側(cè),知,所以,所以,所以,再經(jīng)過分鐘后,所以再經(jīng)過分鐘后盛水筒不在水中.【點睛】本題的解題關(guān)鍵在于準(zhǔn)確求解出三角函數(shù)模型的解析式,才能利用三角函數(shù)性質(zhì)解決實際問題,突破難點.19、(1);(2).【解析】(1)根據(jù)誘導(dǎo)公式化簡求值即可得答案;(2)根據(jù)指數(shù)運算法則運算求解即可.【詳解】解:(1)(2)20、(1)見解析;(2).【解析】(1)設(shè),則,所以,根據(jù)在區(qū)間上是單調(diào)遞增,可得,從而可得函數(shù)在區(qū)間上是單調(diào)遞減函數(shù);(2)先證明在區(qū)間上是單調(diào)遞增的函數(shù),根據(jù)奇偶性可得在區(qū)間上是單調(diào)遞增的函數(shù),再將變形為,可得,進(jìn)而可得實數(shù)的取值范圍.試題解析:(1)設(shè),顯然恒成立.設(shè),則,,,則,所以,又在區(qū)間上是單調(diào)遞增,所以,即,所以函數(shù)在區(qū)間上是單調(diào)遞減函數(shù).(2)因為是定義在實數(shù)集上的奇函數(shù),所以,又因為在區(qū)間上是單調(diào)遞增的函數(shù),所以當(dāng)時,,當(dāng)時,,,所以當(dāng),有.設(shè),則,所以,即,所以,所以在區(qū)間上是單調(diào)遞增函數(shù).綜上所述,在區(qū)間上是單調(diào)遞增的函數(shù).所以由得,即所以.【方法點睛】本題主要考查函數(shù)的奇偶性的應(yīng)用以及抽象函數(shù)與復(fù)合函數(shù)的單調(diào)性,屬于難題.利用定義法判斷函數(shù)的單調(diào)性的一般步驟是:(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論