




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
CRITICALMATERIALS
BATTERIESFOR
ELECTRICVEHICLES
IIRENA
InternationalRenewableEnergyAgency
?IRENA2024
Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.
ISBN978-92-9260-626-8
Citation:IRENA(2024),Criticalmaterials:Batteriesforelectricvehicles,InternationalRenewableEnergyAgency,AbuDhabi.
AboutIRENA
TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergyinthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.
Acknowledgements
ThisreportwasauthoredbyIsaacElizondoGarcia,CarlosRuizandLuisJaneiro(IRENA)andMartinaLyons(ex-IRENA),underthedirectionofFranciscoBoshellandRolandRoesch(Director,IRENAInnovationandTechnologyCentre).
ValuableinputwasprovidedbyIRENAcolleaguesDeeptiSiddhanti,DoraLopez,JinleiFengandZhaoyuLewisWuandYongChen.
Thisreportbenefittedfromtheinputandcommentsofexperts,BryanBille(BenchmarkMineralsIntelligence),ClaudiaBrunori(ItalianNationalAgencyforNewTechnologies,EnergyandSustainableEconomicDevelopment),DanaCartwright(InternationalCouncilonMiningandMetals),DanielWeaver(DepartmentforEnergySecurityandNetZero,UK),DjiboSeydou(MinistryofMines,Niger),DolfGielen(WorldBank),KatherineShapiro(MinistryofEnergyandNaturalResources,Canada),MarcosIerides(Bax&Company),MarosHalama(InoBat),ShoraiKavu(MinistryofEnergyandPowerDevelopment,Zimbabwe),SilviaBobba(JointResearchCentre,EuropeanCommission)andYiheyisEshetu(MinistryofWaterandEnergy,Ethiopia).Thereportwascopy-editedbyFayreMakeigandtechnicalreviewprovidedbyPaulKomor.EditorialsupportwasprovidedbyFrancisFieldandStephanieClarke.GraphicdesignwasprovidedbyNachoSanz.
Forfurtherinformationortoprovidefeedback:publications@Thisreportisavailableat:/publications
Disclaimer
Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.
TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.
Coverphotos:?SergiiChernov/Sand?Varavin88/S
3
CONTENTS
FIgures,tablesandboxes 4
Abbreviations 6
Executivesummary 7
1.Introduction 15
2.DemandsupplyprospectsforEVbatterymaterials 18
2.1Theroleofelectricvehicles(EVs)intheenergytransition 18
2.2.DemandforEVbatterymaterials 20
2.3SupplyofEVbatterymaterials 30
3.Keyconsiderationsforpolicymakers 34
3.1.Resultsandconclusions 34
3.2.Recommendationsforpolicymakers 39
References 44
Annex1Supplydemandprospectspermaterial 50
Annex1.1.Lithium 50
Annex1.2.Cobalt 54
Annex1.3.Graphite 58
Annex1.4.Nickel 61
Annex1.5.Copper 64
Annex1.6.Phosphorous 67
Annex1.7.Manganese 70
Annex2Keyassumptions 73
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
4
FIGURES
Figure1Criticalmaterialsupplyanddemandin2023and2030 9
Figure2Sensitivityanalysisofsupply-demandbalancebasedonaveragebatterysizeand
batterychemistry 11
Figure3Volume-weightedaveragepricesplitforlithium-ionbatterypacksandcells,2013-2023
(realUSD2023/kWh) 16
Figure4Breakdownoftotalfinalenergyconsumptionbyenergycarrierunderthe1.5°CScenario,
2020-2050 18
Figure5EstimatedbatterydemandforEVsunderIRENA’s1.5°CScenariobysegment,
2023-2030 19
Figure6Batterysystemcomponentsandinternalcomponentsofabatterycell 20
Figure7Estimatedaveragecriticalmaterialmetalcontentofselectedlithium-ionEV
batterycathodes 21
Figure8GlobalEVbatterycathodechemistrymixesforpassengervehicles,2015-2023 22
Figure9GlobalEVbatteryanodechemistrymix,2015-2023 23
Figure10EstimatedaveragecriticalmaterialcompositionofselectedEVbatterypacks 24
Figure11Evolutionofhistoricalbatterychemistrymarketsharesforpassengervehicles,
2015-2022,andexplorativescenarios,2023-2030 27
Figure12EstimatedglobalshareofmaterialdemandfromEVbatteriesandotherapplications,
2022and2030 29
Figure13Regionallithium-ionbatterymanufacturingcapacityin2023andplanned
capacityfor2030 30
Figure14Materialsupplyin2023andrangeofestimatedsupplyin2030 32
Figure15Totalbatterymaterialexplorationexpenditure,2010-2023(real2023USDmillion) 33
Figure16Criticalmaterialsupplyanddemandin2023and2030 35
FigureA1.1LithiumdemandfromEVbatteriesandotherapplications,2022and2030 51
FigureA1.2LithiumdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 51
FigureA1.3Lithiumsupplyanddemandin2023and2030 52
FigureA1.4Lithiumsupplyanddemandbalancein2030basedonbatterysizesensitivityanalysis 53
FigureA1.5CobaltdemandfromEVbatteriesandotherapplications,2022and2030 55
FigureA1.6CobaltdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 55
FigureA1.7Cobaltsupplyanddemandin2023and2030 56
FigureA1.8Cobaltsupplyanddemandbalancein2030basedonbatterysizesensitivityanalysis 57
5
Figures,tablesandboxes
FigureA1.9GraphitedemandfromEVbatteriesandotherapplications,2022and2030 59
FigureA1.10GraphitedemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 59
FigureA1.11Graphitesupplyanddemandin2023and2030 60
FigureA1.12NickeldemandfromEVbatteriesandotherapplications,2022and2030 61
FigureA1.13NickeldemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 62
FigureA1.14Nickelsupplyanddemandin2023and2030 63
FigureA1.15RefinedcopperdemandfromEVbatteriesandotherapplications,2022and2030 64
FigureA1.16RefinedcopperdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 65
FigureA1.17Refinedcoppersupplyanddemandin2023and2030 66
FigureA1.18PhosphorousdemandfromEVbatteriesandotherapplications,2022and2030 68
FigureA1.19PhosphorousdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 68
FigureA1.20Phosphoroussupplyanddemandin2023and2030 69
FigureA1.21ManganesedemandfromEVbatteriesandotherapplications,2022and2030 70
FigureA1.22ManganesedemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 71
FigureA1.23Manganesesupplyanddemandin2023and2030 72
TABLES
Table1OverviewofglobalresourcesforselectedEVbatterycriticalmaterials 15
Table2OverviewofcriticalmaterialdemandfromEVbatteriesbyscenario,2030 34
Table3Overviewofoverallsupply-demandbalanceestimations 36
Table4Overviewofkeymaterials 37
TableA2.1GlobalaverageEVbatterysizepervehiclesegment,2022and2030 73
TableA2.2EVbatterychemistrymixforcars/SUVs/vansbyscenario,2030 73
TableA2.3EVbatterychemistrymixformotorcyclesbyscenario,2030 74
TableA2.4EVbatterychemistrymixforbusesbyscenario,2030 74
TableA2.5EVbatterychemistrymixfortrucksbyscenario,2030 74
TableA2.6MaterialcompositionassumedperEVbatterytype,2022 75
TableA2.7Materialcompositionassumedpersodium-ionbatterytype 75
CRITICALMATERIALS:batteriesForeleCtriCVeHiCles
6
BOXES
Box1Sodium-ionbatteries 25
Box2Historicinvestmentsinexploration 33
ABBREVIATIONS
BEVbatteryelectricvehicle
ESGenvironmental,socialandgovernanceEVelectricvehicle
GWhgigawatthour
IRENAInternationalRenewableEnergyAgency
kgkilogram
kWhkilowatthour
LCElithiumcarbonateequivalentLFPlithiumironphosphate
LMFPlithiummanganeseironphosphate
LMOlithiummanganeseoxide
Mtmilliontonnes
NCAnickelcobaltaluminiumoxide
NMCnickelmanganesecobaltoxide
NMCAnickelmanganesecobaltaluminiumoxide
PHEVplug-inhybridelectricvehicle
PPApurifiedphosphoricacid
R&Dresearchanddevelopment
SUVsportsutilityvehicle
Whwatthour
EXECUTIVESUMMARY
Advancingtheenergytransitionwillrequireelectricvehicles(EVs)todominatepassengervehiclesalesby2030.In2023,theglobalstockofpassengerEVsstoodatabout44million.AchievingtheInternationalRenewableEnergyAgency’s(IRENA’s)1.5°CScenariorequiressignificantgrowthoftheglobalstock,to359million,by2030.Thiselectrificationimperativeextendstoallroadtransportsectors,includingthosepreviouslydeemedunsuitableforelectrification,such
aslong-haulroadfreight.
WhiletheoutlookforEVbatteryproductioncapacityispositive,ensuringanadequate,reliableandaffordablesupplyofthenecessaryrawmaterialsisessential.InlinewithIRENA’s1.5°CScenario,theelectrificationofroadtransportwouldrequireEVbatteries’annualproductiontogrowfive-foldbetween2023and2030.Eventhoughthecurrentplannedbatteryproductioncapacityfor2030(7300gigawatthours[GWh]/year)exceedstheanticipateddemandforEVbatteries(4300GWh/year),concertedeffortsarestillneededtosecurethenecessaryrawmaterialsforthesebatteries.
IncreasingdemandforEVswoulddriveupdemandforthematerialsusedinEVbatteries,suchasgraphite,lithium,cobalt,copper,phosphorous,manganeseandnickel.UnderIRENA’s1.5°CScenario,thedemandforlithiumfromEVbatteriescouldroughlyquadruplefrom2023to2030.Similarly,thedemandforcobalt,graphiteandnickelcouldmorethantriple.However,innovationsenablingthesubstitutionofthesematerialsarealreadyreducingdemand;cobaltandnickelwerenolongerusedinnearlyhalfofthepassengerEVssoldin2023.
Whileresourceavailabilityisnotaconstraintforthelong-termdecarbonisationofroadtransport,effortsareneededtoquicklyandeffectivelyscaleupproductiontomeetgrowingdemandintheshorttomediumterm.AshighlightedinpreviousIRENApublications,long-termavailabilityisamatterofexpandingproductionvolumeandensuringdiversityofsupply(Gielen,2021;IRENA,2023a).Forinstance,theannualdemandforlithiumisestimatedtobe2.5-3.1milliontonnesperyear(Mt/year)by2030,withreservesandresourcesstandingat150Mtand560Mt,respectively,indicatingamplesupply(USGS,2024).
7
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
8
Effectivelynavigatinguncertaintiesintheshorttomediumtermrequiresregularmonitoringandassessmentofmarketdynamicsandtechnologicaladvancementsaswellasmodellingvariousscenarios.Onthedemandside,uncertaintiesprimarilyresultfrompoliciessupportingEVdeploymentandtheirimpactontheprojectedvolumeofEVsales;disruptiveinnovation;andtheevolvingmarketshareofdifferentanodeandcathodechemistries,eachcharacterisedbydistinctmaterialcompositions.Onthesupplyside,uncertaintiesstemfromfactorssuchasfluctuatingmarketprices,regulatorychangesandpotentialdisruptionsinthevaluechainduetofactorssuchasnaturaldisasters,geopoliticaltensionsortradedisputes.
IRENAhasdevelopedasupply-demandanalysistounderstandandexplorepotentialbottlenecksby2030,assumingalevelofEVdeploymentalignedwiththe1.5°CScenario.
Withinthiscontext,threebatterychemistryscenariosareexamined.Thefirstscenario,consideredaTechnologyStagnationscenario,assumeslimitedinnovationandacontinuedhighshareofnickel-richchemistries.Thesecondscenario,consideredacontinuationofCurrentTrends,exploresanincreasingdominanceoflithiumironphosphate(LFP)andlithiummanganeseironphosphate(LMFP)batteries.1Thethirdscenario,regardedasanIncreasedInnovationscenario,assumestheprominenceofLFPandLMFPalongsideasignificantincreaseinemergingsodium-iontechnology.Togaugethelikelihoodofasupply-demandgapundereachscenario,arangeofsupplyprojectionsfromotherorganisationsisconsidered.
EVbatteriesarenotdrivingthedemandforallcriticalmaterialsinEVs.Otherindustriesandapplicationsinfluencingthesematerials’availabilityandpricingshouldnotbeoverlooked.
ThedemandforEVbatteriesisamajordriverofdemandforlithium,and–toalesserextent-cobalt,graphiteandnickel.However,copper,withanapproximately4%demandsharefromEVbatteriesby2030,isprimarilydrivenbyconstructionandpower-relatedinfrastructure.Similarly,thedemandsharesforphosphorusandmanganesefromEVbatteriesareestimatedtobeabout3%andonlyabout2%,respectively,by2030.
Withsustainableexpansionofmaterialsupplychains,complementedbycontinuedinnovationinbatterychemistries,countriescanmeetthegrowingdemandforEVbatterymaterials.ThisispossibleevenunderaveryfastadoptionofEVs,inlinewitha1.5°Cdecarbonisationpathway.
Acriticalfactorwillbethescale-upofmaterialsupplyinlinewithcurrentlyavailableforecasts.Beyondthat,fasteradoptionofinnovativebatterieswithlowercriticalmaterialrequirements(e.g.LFP,LMFPandsodium-ion)couldfurthermitigatepotentialshortagesofsomematerials,evenifminingdoesnotscaleupasrapidlyasexpected.Abroadrangeofoutcomesispossibledependingontheevolutionofmaterialsupplycapacityandtheeffectsoftechnologyinnovation.Forinstance,potentiallithiumsurplusesareestimatedat0.60Mt/year,orabout25%oftheestimateddemandin2030,whileshortagescouldreachupto1.3Mt/year,representingabout40%oftheestimateddemandin2030(Figure1).
1LFPreferstolithiumironphosphatebatteries,andLMFPreferstolithiummanganeseironphosphatebatteries.
9
exeCutiVesummary
FIGURE1Criticalmaterialsupplyanddemandin2023and2030
Graphite
3.53.02.52.01.51.00.50.0
8
6
4
2
Mt/year
0
42
36
30
24
18
12
6
0
28
24
20
16
12
8
4
0
Lithium
Copper
Manganese
Nickel
Phosphorous
0.5
0.4
0.3
0.2
0.1
0.0
6
5
4
3
2
1
0
30
25
20
15
10
5
0
Cobalt
Supplyin2023
Lowdemandin2030 Lowsupplyin2030Syntheticgraphite
Highdemandin2030Highsupplyin2030
Sources:Lithium–supplyin2023basedonUSGS(2024);supplyin2030basedonAlbemarle(2023),BNEF(2024a),ETC(2023),FitchSolutions(2022),JimenezandSaez(2022)andS&PGlobal(2023).Cobalt–supplyin2023basedonUSGS(2024);supplyanddemandin2030basedonBNEF(2024a),CobaltBlueHoldings(2022),Darbar(2022),ETC(2023),Fu(2020),PattersonandRankumar(2023)andS&PGlobal(2023).Graphite–supplyin2023basedonUSGS(2024);supply
in2030basedonBlackRockMining(2023),ETC(2023)andWSJ(2023).Nickel–supplyin2023basedonUSGS(2024);supplyin2030basedonBNEF(2024b),ETC(2023)andS&PGlobal(2023).Copper–supplyin2023basedon
USGS(2024);supplyin2030basedonBNEF(2024b),ETC(2023)andS&PGlobal(2023).Phosphorous–supplyin2023basedonBrownlieetal.(2022)andUSGS(2024);supplyin2030basedonIRENAanalysis.Manganese–supplyin2023basedonUSGS(2024);supplyin2030basedonJupiterMines(2023)andMcKinsey(2022).
Notes:Supplyestimatesincludeannounced,plannedandpotentialsupply.Lithiumisexpressedintermsoflithiumcarbonateequivalent(LCE).Copperreferstorefinedcopper.Thevaluesforphosphorousrefertoelementalphosphorous.Mt=milliontonnes.
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
10
Bothbatterychemistryandbatterysizehaveasignificantimpactonthemarketdynamicsofcriticalmaterials.Figure2featuresthreegraphsforeachcriticalmaterial.Eachgraphrepresentsadifferentbatterychemistryscenario.Thegraphsplotthepotentialmarketbalanceonthey-axisagainstvariousbatterysizesonthex-axis.Theyshowcasehoweachfactorcontributestosupply-demandrelationshipsforcriticalmaterials.TheaveragesizeofEVbatteries,estimatedtoplateauatabout57kilowatthours(kWh),iscrucialasitdirectlycorrelateswiththedemandforbatterymaterials(BNEF,2024a;Krishna,2023).ThesensitivityanalysisdepictedinFigure2considersarangeofestimatedsupplyandusecolourcoding:theyellowareaindicatespotentialmarketshortfalls,whilethegreenareahighlightspotentialsurpluses.Orangedotsrepresentthemarketbalanceunderconditionsoflowsupply,whilegreendotsdenotethebalanceunderhigh-supplyscenarios.
LITHIUM
NICKEL
COBALT
COPPER
MANGANESE
GRAPHITE
PHOSPHOROUS
11
exeCutiVesummary
FIGURE2Sensitivityanalysisofsupply-demandbalancebasedonaveragebatterysizeand
batterychemistry
TechnologyStagnationscenarioCurrentTrendsscenarioIncreasedInnovationscenario
1.501.000.500.00-0.50-1.00-1.50
Lithium(LCE)
0.250.200.150.100.050.00-0.05-0.10-0.15-0.20-0.25
Mt
3.00
1.50
0.00
-1.50
-3.00
Cobalt
Graphite
2.001.501.000.500.00-0.50-1.00-1.50-2.00
Nickel
505560657050556065705055606570
kWh
oDe?citoSurplusoLowsupplyoHighsupply
Notes:kWh=kilowatthour;LCE=lithiumcarbonateequivalent;Mt=milliontonnes.
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
12
Basedontheanalysisoffactorsaffectingbothsupplyanddemandby2030,thefollowingperspectivesarepresentedforeachmaterial:
?Thedemandforlithiumremainslargelyunaffectedbythechoiceofbatterychemistry,sincemostEVbatterytechnologiesdependonit.Sodium-ionbatteries,whichdonotrelyonlithium,mayentertheEVbatterymarketlaterinthedecade,buttheirimpactonreducinglithiumdemandwilllikelybemoresignificantafter2030.Long-termavailabilityoflithiumisnotaconstraint.Instead,addressingpotentiallithiumdeficitswillsignificantlyrelyonexpandingthesupplychainorreducingdemandthroughimprovementoftheenergydensity2ofexistinglithium-ionbatteries.
?CobaltcanbesubstitutedwiththeintegrationoftechnologiessuchasLFPandLMFP,rapidlyreducingcobalt’scriticalityforroadtransportelectrification.However,cobaltsupplyshortfallscouldbepossibleinscenarioswherecobalt-containingbatteries,suchasnickelmanganese
cobaltoxide(NMC)andnickelcobaltaluminiumoxide(NMCA),remainwidespread.
?Basedoncurrentsupplyprojections,naturalgraphitewilllikelybeinsufficienttomeetallexpectedgraphitedemandby2030.Syntheticgraphite,althoughmoreenergyintensive,couldbescaleduptobridgethesupplygap.Beyondthat,atransitiontowardsanodeswithincreasedsiliconcontentisalreadyoccurringandcouldfurtherreducepressureonthematerial.
?NickeldemandhasalreadybeencontainedbytheriseofLFPandLMFPbatteries.Afurthertransitionfromnickel-richbatteriestootherchemistrieswouldmakesupplyshortagesunlikely,unlessthesupplymaterialisesatthelowerendofthecurrentsupplyprojectionsrange.
?Thedemandforcopper,phosphorousandmanganesefromtheEVmarketisexpectedtorepresentonlyasmallshareofglobaldemandforthesematerials.Therefore,itsimpactonshapingsupplyanddemanddynamicswillberelativelyminorcomparedwithdemandfromlargersectors.However,addressingissuessurroundingbattery-gradepurifiedphosphoricacidandhigh-puritymanganesesulphateemergesasthemostpressingconcern,requiringconcertedactionstorapidlyexpandtheirsupplychains.
Innovationhasalreadydecreasedthedemandforcriticalmaterialssignificantly.Forinstance,LFPbatteries,whichhadasingle-digitmarketsharein2015,capturedanestimated44%ofthepassengervehiclemarketin2023.Projecting2023’scobaltandnickeldemandfiveyearsprior–consideringthemixofbatterychemistriesatthetime–wouldhaveledtosignificantoverestimationsofdemand.Forinstance,cobaltandnickeldemandfromEVbatterieswouldhavebeenabout50%higher.
2Inthisreport,energydensityreferstogravimetricenergydensity.
13
exeCutiVesummary
AdvancesinEVbatterytechnologyhavealsoimprovedgravimetricenergydensitysignificantly,a30%increase,onaverage,forbatterycellsand60%forbatterypacksoverthepastdecade(BNEF,2024).Theseadvancesnotonlyboostenergyperformanceanddrivedowncosts,theyalsoplayasignificantroleinreducingmaterialdemand.Furtherimprovementsarestillpossible.Forinstance,ContemporaryAmperexTechnologyCo.,Limited(CATL)andNorthvolthavedevelopedasodium-ionbatterywithanenergydensityof160watthourperkilogramme(Wh/kg);theyareplanningforthenextgenerationtoexceed200Wh/kg(CATL,2023;Northvolt,2023).Moreover,CATLhasunveiledacondensedbatterycell,which,throughchemicalanddesigninnovation,isabletoachieveagravimetricenergydensityof500Wh/kg(CATL,2023).Thismarkedlysurpassesthetypicalenergydensityof250-300Wh/kginnickel-richbatteries(Ringbeck,2024).Designpresentsanotheravenueforinnovation.Forexample,BYDhascommercialisedthecell-to-packtechnologyandisnowadvancingtocell-to-bodytechnology.Thislatestapproachfurtherincreasesenergydensitybyintegratingbatterycellsdirectlyintoacar’sbody,therebycompletelyeliminatingtheneedforatraditionalbatterypack(BYD,2023;WEF,2023).
Innovationemergesasthecentralcomponentinaddressingpotentialbottlenecks,offeringpathwaystoreducedemandandbolstersupply.Amonginnovations,advancementsinEVbatterycathodes,notablyLFPandLMFP,alongsideemergingtechnologies,suchassodium-ion,couldalleviate,ifnotentirelyeliminate,thedemandforsomematerials.ContinuousimprovementinenergydensitythroughinnovativedesignandengineeringcouldpositionLFPandLMFPaschallengerstonickel-richbatteries’dominanceinhigh-endEVmarketsegments.Overcomingsodium-iontechnology’schallengescouldleadtostructuraladvancements,bypartiallyorcompletelyeliminatingtheneedforsomematerials,forexample,lithium,cobaltandgraphite.Moreover,innovationinminingandprocessingcouldalleviatepressuresonthesupplyside,enablingtimely,cost-effectiveandsustainableproductionofmaterials.
ThisreportdetailsseveralactionsforgovernmentsandstakeholdersacrosstheEVbatterysupplychaintoensureanadequate,reliable,sustainableandaffordablesupplyofcriticalmaterialsforEVbatteriesby2030.
Toaddresspotentialmaterialbottlenecks,governmentscanplayakeyroleinacceleratingandsupportinginnovationaimedatreducingoreliminatingtheuseofcriticalmaterialsinEVbatteries.Examplesofpossibleinnovationsincludeadvancementsincathodeandanodetechnologies,andimprovementsinbatterydesignandengineeringtoboostenergydensityandreducematerialuse.GiventherapidevolutionofEVbatterytechnologies,governments,miningandprocessingcompanies,andbatterymanufacturerscanmonitormarketscloselyandfrequentlyandincreaseindustryengagementtostayabreastofthelatesttrendsandbreakthroughsininnovation.GovernmentsmayalsofacilitateareductionofcriticalmaterialdemandbysupportingtheaccelerateddeploymentofEVcharginginfrastructure,supportingtheadoptionofEVswithsma
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 混凝土路面熱天施工方案
- 梧州職業(yè)學(xué)院《行草創(chuàng)作(3)》2023-2024學(xué)年第二學(xué)期期末試卷
- 寧波衛(wèi)生職業(yè)技術(shù)學(xué)院《地貌與第四紀(jì)地質(zhì)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《建設(shè)項(xiàng)目投資與融資》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北數(shù)字化施工方案
- 江蘇師范大學(xué)《秘書(shū)從業(yè)技能訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉林外國(guó)語(yǔ)大學(xué)《播音學(xué)(一)》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北凈化彩鋼板施工方案
- 脫硫塔平臺(tái)施工方案范本
- 武漢交通職業(yè)學(xué)院《河北醫(yī)家學(xué)術(shù)思想與臨床研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 無(wú)人機(jī)租賃合同
- 軍事理論(2024年版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- YS-T 5226-2016水質(zhì)分析規(guī)程
- 國(guó)開(kāi)2024年秋《生產(chǎn)與運(yùn)作管理》形成性考核1-4答案
- 國(guó)家病案質(zhì)控死亡病例自查表
- 2024年江蘇省無(wú)錫市天一實(shí)驗(yàn)學(xué)校中考英語(yǔ)押題試卷含答案
- DB3305-T 57-2018幸福鄰里中心建設(shè)與服務(wù)管理規(guī)范
- AIGC基礎(chǔ)與應(yīng)用全套教學(xué)課件
- 9.1.3二項(xiàng)分布(解析版)
- 神經(jīng)生長(zhǎng)因子在神經(jīng)退行性疾病中的作用
- 國(guó)有企業(yè)采購(gòu)管理規(guī)范 T/CFLP 0027-2020
評(píng)論
0/150
提交評(píng)論