版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
CRITICALMATERIALS
BATTERIESFOR
ELECTRICVEHICLES
IIRENA
InternationalRenewableEnergyAgency
?IRENA2024
Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.
ISBN978-92-9260-626-8
Citation:IRENA(2024),Criticalmaterials:Batteriesforelectricvehicles,InternationalRenewableEnergyAgency,AbuDhabi.
AboutIRENA
TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergyinthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.
Acknowledgements
ThisreportwasauthoredbyIsaacElizondoGarcia,CarlosRuizandLuisJaneiro(IRENA)andMartinaLyons(ex-IRENA),underthedirectionofFranciscoBoshellandRolandRoesch(Director,IRENAInnovationandTechnologyCentre).
ValuableinputwasprovidedbyIRENAcolleaguesDeeptiSiddhanti,DoraLopez,JinleiFengandZhaoyuLewisWuandYongChen.
Thisreportbenefittedfromtheinputandcommentsofexperts,BryanBille(BenchmarkMineralsIntelligence),ClaudiaBrunori(ItalianNationalAgencyforNewTechnologies,EnergyandSustainableEconomicDevelopment),DanaCartwright(InternationalCouncilonMiningandMetals),DanielWeaver(DepartmentforEnergySecurityandNetZero,UK),DjiboSeydou(MinistryofMines,Niger),DolfGielen(WorldBank),KatherineShapiro(MinistryofEnergyandNaturalResources,Canada),MarcosIerides(Bax&Company),MarosHalama(InoBat),ShoraiKavu(MinistryofEnergyandPowerDevelopment,Zimbabwe),SilviaBobba(JointResearchCentre,EuropeanCommission)andYiheyisEshetu(MinistryofWaterandEnergy,Ethiopia).Thereportwascopy-editedbyFayreMakeigandtechnicalreviewprovidedbyPaulKomor.EditorialsupportwasprovidedbyFrancisFieldandStephanieClarke.GraphicdesignwasprovidedbyNachoSanz.
Forfurtherinformationortoprovidefeedback:publications@Thisreportisavailableat:/publications
Disclaimer
Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.
TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.
Coverphotos:?SergiiChernov/Sand?Varavin88/S
3
CONTENTS
FIgures,tablesandboxes 4
Abbreviations 6
Executivesummary 7
1.Introduction 15
2.DemandsupplyprospectsforEVbatterymaterials 18
2.1Theroleofelectricvehicles(EVs)intheenergytransition 18
2.2.DemandforEVbatterymaterials 20
2.3SupplyofEVbatterymaterials 30
3.Keyconsiderationsforpolicymakers 34
3.1.Resultsandconclusions 34
3.2.Recommendationsforpolicymakers 39
References 44
Annex1Supplydemandprospectspermaterial 50
Annex1.1.Lithium 50
Annex1.2.Cobalt 54
Annex1.3.Graphite 58
Annex1.4.Nickel 61
Annex1.5.Copper 64
Annex1.6.Phosphorous 67
Annex1.7.Manganese 70
Annex2Keyassumptions 73
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
4
FIGURES
Figure1Criticalmaterialsupplyanddemandin2023and2030 9
Figure2Sensitivityanalysisofsupply-demandbalancebasedonaveragebatterysizeand
batterychemistry 11
Figure3Volume-weightedaveragepricesplitforlithium-ionbatterypacksandcells,2013-2023
(realUSD2023/kWh) 16
Figure4Breakdownoftotalfinalenergyconsumptionbyenergycarrierunderthe1.5°CScenario,
2020-2050 18
Figure5EstimatedbatterydemandforEVsunderIRENA’s1.5°CScenariobysegment,
2023-2030 19
Figure6Batterysystemcomponentsandinternalcomponentsofabatterycell 20
Figure7Estimatedaveragecriticalmaterialmetalcontentofselectedlithium-ionEV
batterycathodes 21
Figure8GlobalEVbatterycathodechemistrymixesforpassengervehicles,2015-2023 22
Figure9GlobalEVbatteryanodechemistrymix,2015-2023 23
Figure10EstimatedaveragecriticalmaterialcompositionofselectedEVbatterypacks 24
Figure11Evolutionofhistoricalbatterychemistrymarketsharesforpassengervehicles,
2015-2022,andexplorativescenarios,2023-2030 27
Figure12EstimatedglobalshareofmaterialdemandfromEVbatteriesandotherapplications,
2022and2030 29
Figure13Regionallithium-ionbatterymanufacturingcapacityin2023andplanned
capacityfor2030 30
Figure14Materialsupplyin2023andrangeofestimatedsupplyin2030 32
Figure15Totalbatterymaterialexplorationexpenditure,2010-2023(real2023USDmillion) 33
Figure16Criticalmaterialsupplyanddemandin2023and2030 35
FigureA1.1LithiumdemandfromEVbatteriesandotherapplications,2022and2030 51
FigureA1.2LithiumdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 51
FigureA1.3Lithiumsupplyanddemandin2023and2030 52
FigureA1.4Lithiumsupplyanddemandbalancein2030basedonbatterysizesensitivityanalysis 53
FigureA1.5CobaltdemandfromEVbatteriesandotherapplications,2022and2030 55
FigureA1.6CobaltdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 55
FigureA1.7Cobaltsupplyanddemandin2023and2030 56
FigureA1.8Cobaltsupplyanddemandbalancein2030basedonbatterysizesensitivityanalysis 57
5
Figures,tablesandboxes
FigureA1.9GraphitedemandfromEVbatteriesandotherapplications,2022and2030 59
FigureA1.10GraphitedemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 59
FigureA1.11Graphitesupplyanddemandin2023and2030 60
FigureA1.12NickeldemandfromEVbatteriesandotherapplications,2022and2030 61
FigureA1.13NickeldemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 62
FigureA1.14Nickelsupplyanddemandin2023and2030 63
FigureA1.15RefinedcopperdemandfromEVbatteriesandotherapplications,2022and2030 64
FigureA1.16RefinedcopperdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 65
FigureA1.17Refinedcoppersupplyanddemandin2023and2030 66
FigureA1.18PhosphorousdemandfromEVbatteriesandotherapplications,2022and2030 68
FigureA1.19PhosphorousdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 68
FigureA1.20Phosphoroussupplyanddemandin2023and2030 69
FigureA1.21ManganesedemandfromEVbatteriesandotherapplications,2022and2030 70
FigureA1.22ManganesedemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 71
FigureA1.23Manganesesupplyanddemandin2023and2030 72
TABLES
Table1OverviewofglobalresourcesforselectedEVbatterycriticalmaterials 15
Table2OverviewofcriticalmaterialdemandfromEVbatteriesbyscenario,2030 34
Table3Overviewofoverallsupply-demandbalanceestimations 36
Table4Overviewofkeymaterials 37
TableA2.1GlobalaverageEVbatterysizepervehiclesegment,2022and2030 73
TableA2.2EVbatterychemistrymixforcars/SUVs/vansbyscenario,2030 73
TableA2.3EVbatterychemistrymixformotorcyclesbyscenario,2030 74
TableA2.4EVbatterychemistrymixforbusesbyscenario,2030 74
TableA2.5EVbatterychemistrymixfortrucksbyscenario,2030 74
TableA2.6MaterialcompositionassumedperEVbatterytype,2022 75
TableA2.7Materialcompositionassumedpersodium-ionbatterytype 75
CRITICALMATERIALS:batteriesForeleCtriCVeHiCles
6
BOXES
Box1Sodium-ionbatteries 25
Box2Historicinvestmentsinexploration 33
ABBREVIATIONS
BEVbatteryelectricvehicle
ESGenvironmental,socialandgovernanceEVelectricvehicle
GWhgigawatthour
IRENAInternationalRenewableEnergyAgency
kgkilogram
kWhkilowatthour
LCElithiumcarbonateequivalentLFPlithiumironphosphate
LMFPlithiummanganeseironphosphate
LMOlithiummanganeseoxide
Mtmilliontonnes
NCAnickelcobaltaluminiumoxide
NMCnickelmanganesecobaltoxide
NMCAnickelmanganesecobaltaluminiumoxide
PHEVplug-inhybridelectricvehicle
PPApurifiedphosphoricacid
R&Dresearchanddevelopment
SUVsportsutilityvehicle
Whwatthour
EXECUTIVESUMMARY
Advancingtheenergytransitionwillrequireelectricvehicles(EVs)todominatepassengervehiclesalesby2030.In2023,theglobalstockofpassengerEVsstoodatabout44million.AchievingtheInternationalRenewableEnergyAgency’s(IRENA’s)1.5°CScenariorequiressignificantgrowthoftheglobalstock,to359million,by2030.Thiselectrificationimperativeextendstoallroadtransportsectors,includingthosepreviouslydeemedunsuitableforelectrification,such
aslong-haulroadfreight.
WhiletheoutlookforEVbatteryproductioncapacityispositive,ensuringanadequate,reliableandaffordablesupplyofthenecessaryrawmaterialsisessential.InlinewithIRENA’s1.5°CScenario,theelectrificationofroadtransportwouldrequireEVbatteries’annualproductiontogrowfive-foldbetween2023and2030.Eventhoughthecurrentplannedbatteryproductioncapacityfor2030(7300gigawatthours[GWh]/year)exceedstheanticipateddemandforEVbatteries(4300GWh/year),concertedeffortsarestillneededtosecurethenecessaryrawmaterialsforthesebatteries.
IncreasingdemandforEVswoulddriveupdemandforthematerialsusedinEVbatteries,suchasgraphite,lithium,cobalt,copper,phosphorous,manganeseandnickel.UnderIRENA’s1.5°CScenario,thedemandforlithiumfromEVbatteriescouldroughlyquadruplefrom2023to2030.Similarly,thedemandforcobalt,graphiteandnickelcouldmorethantriple.However,innovationsenablingthesubstitutionofthesematerialsarealreadyreducingdemand;cobaltandnickelwerenolongerusedinnearlyhalfofthepassengerEVssoldin2023.
Whileresourceavailabilityisnotaconstraintforthelong-termdecarbonisationofroadtransport,effortsareneededtoquicklyandeffectivelyscaleupproductiontomeetgrowingdemandintheshorttomediumterm.AshighlightedinpreviousIRENApublications,long-termavailabilityisamatterofexpandingproductionvolumeandensuringdiversityofsupply(Gielen,2021;IRENA,2023a).Forinstance,theannualdemandforlithiumisestimatedtobe2.5-3.1milliontonnesperyear(Mt/year)by2030,withreservesandresourcesstandingat150Mtand560Mt,respectively,indicatingamplesupply(USGS,2024).
7
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
8
Effectivelynavigatinguncertaintiesintheshorttomediumtermrequiresregularmonitoringandassessmentofmarketdynamicsandtechnologicaladvancementsaswellasmodellingvariousscenarios.Onthedemandside,uncertaintiesprimarilyresultfrompoliciessupportingEVdeploymentandtheirimpactontheprojectedvolumeofEVsales;disruptiveinnovation;andtheevolvingmarketshareofdifferentanodeandcathodechemistries,eachcharacterisedbydistinctmaterialcompositions.Onthesupplyside,uncertaintiesstemfromfactorssuchasfluctuatingmarketprices,regulatorychangesandpotentialdisruptionsinthevaluechainduetofactorssuchasnaturaldisasters,geopoliticaltensionsortradedisputes.
IRENAhasdevelopedasupply-demandanalysistounderstandandexplorepotentialbottlenecksby2030,assumingalevelofEVdeploymentalignedwiththe1.5°CScenario.
Withinthiscontext,threebatterychemistryscenariosareexamined.Thefirstscenario,consideredaTechnologyStagnationscenario,assumeslimitedinnovationandacontinuedhighshareofnickel-richchemistries.Thesecondscenario,consideredacontinuationofCurrentTrends,exploresanincreasingdominanceoflithiumironphosphate(LFP)andlithiummanganeseironphosphate(LMFP)batteries.1Thethirdscenario,regardedasanIncreasedInnovationscenario,assumestheprominenceofLFPandLMFPalongsideasignificantincreaseinemergingsodium-iontechnology.Togaugethelikelihoodofasupply-demandgapundereachscenario,arangeofsupplyprojectionsfromotherorganisationsisconsidered.
EVbatteriesarenotdrivingthedemandforallcriticalmaterialsinEVs.Otherindustriesandapplicationsinfluencingthesematerials’availabilityandpricingshouldnotbeoverlooked.
ThedemandforEVbatteriesisamajordriverofdemandforlithium,and–toalesserextent-cobalt,graphiteandnickel.However,copper,withanapproximately4%demandsharefromEVbatteriesby2030,isprimarilydrivenbyconstructionandpower-relatedinfrastructure.Similarly,thedemandsharesforphosphorusandmanganesefromEVbatteriesareestimatedtobeabout3%andonlyabout2%,respectively,by2030.
Withsustainableexpansionofmaterialsupplychains,complementedbycontinuedinnovationinbatterychemistries,countriescanmeetthegrowingdemandforEVbatterymaterials.ThisispossibleevenunderaveryfastadoptionofEVs,inlinewitha1.5°Cdecarbonisationpathway.
Acriticalfactorwillbethescale-upofmaterialsupplyinlinewithcurrentlyavailableforecasts.Beyondthat,fasteradoptionofinnovativebatterieswithlowercriticalmaterialrequirements(e.g.LFP,LMFPandsodium-ion)couldfurthermitigatepotentialshortagesofsomematerials,evenifminingdoesnotscaleupasrapidlyasexpected.Abroadrangeofoutcomesispossibledependingontheevolutionofmaterialsupplycapacityandtheeffectsoftechnologyinnovation.Forinstance,potentiallithiumsurplusesareestimatedat0.60Mt/year,orabout25%oftheestimateddemandin2030,whileshortagescouldreachupto1.3Mt/year,representingabout40%oftheestimateddemandin2030(Figure1).
1LFPreferstolithiumironphosphatebatteries,andLMFPreferstolithiummanganeseironphosphatebatteries.
9
exeCutiVesummary
FIGURE1Criticalmaterialsupplyanddemandin2023and2030
Graphite
3.53.02.52.01.51.00.50.0
8
6
4
2
Mt/year
0
42
36
30
24
18
12
6
0
28
24
20
16
12
8
4
0
Lithium
Copper
Manganese
Nickel
Phosphorous
0.5
0.4
0.3
0.2
0.1
0.0
6
5
4
3
2
1
0
30
25
20
15
10
5
0
Cobalt
Supplyin2023
Lowdemandin2030 Lowsupplyin2030Syntheticgraphite
Highdemandin2030Highsupplyin2030
Sources:Lithium–supplyin2023basedonUSGS(2024);supplyin2030basedonAlbemarle(2023),BNEF(2024a),ETC(2023),FitchSolutions(2022),JimenezandSaez(2022)andS&PGlobal(2023).Cobalt–supplyin2023basedonUSGS(2024);supplyanddemandin2030basedonBNEF(2024a),CobaltBlueHoldings(2022),Darbar(2022),ETC(2023),Fu(2020),PattersonandRankumar(2023)andS&PGlobal(2023).Graphite–supplyin2023basedonUSGS(2024);supply
in2030basedonBlackRockMining(2023),ETC(2023)andWSJ(2023).Nickel–supplyin2023basedonUSGS(2024);supplyin2030basedonBNEF(2024b),ETC(2023)andS&PGlobal(2023).Copper–supplyin2023basedon
USGS(2024);supplyin2030basedonBNEF(2024b),ETC(2023)andS&PGlobal(2023).Phosphorous–supplyin2023basedonBrownlieetal.(2022)andUSGS(2024);supplyin2030basedonIRENAanalysis.Manganese–supplyin2023basedonUSGS(2024);supplyin2030basedonJupiterMines(2023)andMcKinsey(2022).
Notes:Supplyestimatesincludeannounced,plannedandpotentialsupply.Lithiumisexpressedintermsoflithiumcarbonateequivalent(LCE).Copperreferstorefinedcopper.Thevaluesforphosphorousrefertoelementalphosphorous.Mt=milliontonnes.
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
10
Bothbatterychemistryandbatterysizehaveasignificantimpactonthemarketdynamicsofcriticalmaterials.Figure2featuresthreegraphsforeachcriticalmaterial.Eachgraphrepresentsadifferentbatterychemistryscenario.Thegraphsplotthepotentialmarketbalanceonthey-axisagainstvariousbatterysizesonthex-axis.Theyshowcasehoweachfactorcontributestosupply-demandrelationshipsforcriticalmaterials.TheaveragesizeofEVbatteries,estimatedtoplateauatabout57kilowatthours(kWh),iscrucialasitdirectlycorrelateswiththedemandforbatterymaterials(BNEF,2024a;Krishna,2023).ThesensitivityanalysisdepictedinFigure2considersarangeofestimatedsupplyandusecolourcoding:theyellowareaindicatespotentialmarketshortfalls,whilethegreenareahighlightspotentialsurpluses.Orangedotsrepresentthemarketbalanceunderconditionsoflowsupply,whilegreendotsdenotethebalanceunderhigh-supplyscenarios.
LITHIUM
NICKEL
COBALT
COPPER
MANGANESE
GRAPHITE
PHOSPHOROUS
11
exeCutiVesummary
FIGURE2Sensitivityanalysisofsupply-demandbalancebasedonaveragebatterysizeand
batterychemistry
TechnologyStagnationscenarioCurrentTrendsscenarioIncreasedInnovationscenario
1.501.000.500.00-0.50-1.00-1.50
Lithium(LCE)
0.250.200.150.100.050.00-0.05-0.10-0.15-0.20-0.25
Mt
3.00
1.50
0.00
-1.50
-3.00
Cobalt
Graphite
2.001.501.000.500.00-0.50-1.00-1.50-2.00
Nickel
505560657050556065705055606570
kWh
oDe?citoSurplusoLowsupplyoHighsupply
Notes:kWh=kilowatthour;LCE=lithiumcarbonateequivalent;Mt=milliontonnes.
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
12
Basedontheanalysisoffactorsaffectingbothsupplyanddemandby2030,thefollowingperspectivesarepresentedforeachmaterial:
?Thedemandforlithiumremainslargelyunaffectedbythechoiceofbatterychemistry,sincemostEVbatterytechnologiesdependonit.Sodium-ionbatteries,whichdonotrelyonlithium,mayentertheEVbatterymarketlaterinthedecade,buttheirimpactonreducinglithiumdemandwilllikelybemoresignificantafter2030.Long-termavailabilityoflithiumisnotaconstraint.Instead,addressingpotentiallithiumdeficitswillsignificantlyrelyonexpandingthesupplychainorreducingdemandthroughimprovementoftheenergydensity2ofexistinglithium-ionbatteries.
?CobaltcanbesubstitutedwiththeintegrationoftechnologiessuchasLFPandLMFP,rapidlyreducingcobalt’scriticalityforroadtransportelectrification.However,cobaltsupplyshortfallscouldbepossibleinscenarioswherecobalt-containingbatteries,suchasnickelmanganese
cobaltoxide(NMC)andnickelcobaltaluminiumoxide(NMCA),remainwidespread.
?Basedoncurrentsupplyprojections,naturalgraphitewilllikelybeinsufficienttomeetallexpectedgraphitedemandby2030.Syntheticgraphite,althoughmoreenergyintensive,couldbescaleduptobridgethesupplygap.Beyondthat,atransitiontowardsanodeswithincreasedsiliconcontentisalreadyoccurringandcouldfurtherreducepressureonthematerial.
?NickeldemandhasalreadybeencontainedbytheriseofLFPandLMFPbatteries.Afurthertransitionfromnickel-richbatteriestootherchemistrieswouldmakesupplyshortagesunlikely,unlessthesupplymaterialisesatthelowerendofthecurrentsupplyprojectionsrange.
?Thedemandforcopper,phosphorousandmanganesefromtheEVmarketisexpectedtorepresentonlyasmallshareofglobaldemandforthesematerials.Therefore,itsimpactonshapingsupplyanddemanddynamicswillberelativelyminorcomparedwithdemandfromlargersectors.However,addressingissuessurroundingbattery-gradepurifiedphosphoricacidandhigh-puritymanganesesulphateemergesasthemostpressingconcern,requiringconcertedactionstorapidlyexpandtheirsupplychains.
Innovationhasalreadydecreasedthedemandforcriticalmaterialssignificantly.Forinstance,LFPbatteries,whichhadasingle-digitmarketsharein2015,capturedanestimated44%ofthepassengervehiclemarketin2023.Projecting2023’scobaltandnickeldemandfiveyearsprior–consideringthemixofbatterychemistriesatthetime–wouldhaveledtosignificantoverestimationsofdemand.Forinstance,cobaltandnickeldemandfromEVbatterieswouldhavebeenabout50%higher.
2Inthisreport,energydensityreferstogravimetricenergydensity.
13
exeCutiVesummary
AdvancesinEVbatterytechnologyhavealsoimprovedgravimetricenergydensitysignificantly,a30%increase,onaverage,forbatterycellsand60%forbatterypacksoverthepastdecade(BNEF,2024).Theseadvancesnotonlyboostenergyperformanceanddrivedowncosts,theyalsoplayasignificantroleinreducingmaterialdemand.Furtherimprovementsarestillpossible.Forinstance,ContemporaryAmperexTechnologyCo.,Limited(CATL)andNorthvolthavedevelopedasodium-ionbatterywithanenergydensityof160watthourperkilogramme(Wh/kg);theyareplanningforthenextgenerationtoexceed200Wh/kg(CATL,2023;Northvolt,2023).Moreover,CATLhasunveiledacondensedbatterycell,which,throughchemicalanddesigninnovation,isabletoachieveagravimetricenergydensityof500Wh/kg(CATL,2023).Thismarkedlysurpassesthetypicalenergydensityof250-300Wh/kginnickel-richbatteries(Ringbeck,2024).Designpresentsanotheravenueforinnovation.Forexample,BYDhascommercialisedthecell-to-packtechnologyandisnowadvancingtocell-to-bodytechnology.Thislatestapproachfurtherincreasesenergydensitybyintegratingbatterycellsdirectlyintoacar’sbody,therebycompletelyeliminatingtheneedforatraditionalbatterypack(BYD,2023;WEF,2023).
Innovationemergesasthecentralcomponentinaddressingpotentialbottlenecks,offeringpathwaystoreducedemandandbolstersupply.Amonginnovations,advancementsinEVbatterycathodes,notablyLFPandLMFP,alongsideemergingtechnologies,suchassodium-ion,couldalleviate,ifnotentirelyeliminate,thedemandforsomematerials.ContinuousimprovementinenergydensitythroughinnovativedesignandengineeringcouldpositionLFPandLMFPaschallengerstonickel-richbatteries’dominanceinhigh-endEVmarketsegments.Overcomingsodium-iontechnology’schallengescouldleadtostructuraladvancements,bypartiallyorcompletelyeliminatingtheneedforsomematerials,forexample,lithium,cobaltandgraphite.Moreover,innovationinminingandprocessingcouldalleviatepressuresonthesupplyside,enablingtimely,cost-effectiveandsustainableproductionofmaterials.
ThisreportdetailsseveralactionsforgovernmentsandstakeholdersacrosstheEVbatterysupplychaintoensureanadequate,reliable,sustainableandaffordablesupplyofcriticalmaterialsforEVbatteriesby2030.
Toaddresspotentialmaterialbottlenecks,governmentscanplayakeyroleinacceleratingandsupportinginnovationaimedatreducingoreliminatingtheuseofcriticalmaterialsinEVbatteries.Examplesofpossibleinnovationsincludeadvancementsincathodeandanodetechnologies,andimprovementsinbatterydesignandengineeringtoboostenergydensityandreducematerialuse.GiventherapidevolutionofEVbatterytechnologies,governments,miningandprocessingcompanies,andbatterymanufacturerscanmonitormarketscloselyandfrequentlyandincreaseindustryengagementtostayabreastofthelatesttrendsandbreakthroughsininnovation.GovernmentsmayalsofacilitateareductionofcriticalmaterialdemandbysupportingtheaccelerateddeploymentofEVcharginginfrastructure,supportingtheadoptionofEVswithsma
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 紡織原料整車物流協(xié)議范本
- 2025至2030年中國電子車數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國曬后護理劑數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國加捻彈力紗數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國三節(jié)臂數(shù)據(jù)監(jiān)測研究報告
- 影視廣告居間合作協(xié)議
- 2025年中國筒紗線市場調(diào)查研究報告
- 2025至2031年中國溴氟菊酯乳化劑行業(yè)投資前景及策略咨詢研究報告
- 書籍報刊快遞寄送合同
- 電解槽施工人員培訓與質(zhì)量保障措施
- 投標報價明顯低于采購預算價說明函
- 福建師范大學(答案)課程考試2023年2月《刑事訴訟法》作業(yè)考核試題
- 寫人事物景作文課件
- 廠級安全培訓資料
- 中國藥科大學《藥物化學》教學日歷
- 露天礦山課件
- 經(jīng)濟效益證明(模板)
- 銀行卡凍結(jié)怎么寫申請書
- 果樹蔬菜病害:第一章 蔬菜害蟲
- 人工地震動生成程序
- SSB變槳系統(tǒng)的基礎知識
評論
0/150
提交評論