英文關(guān)鍵材料:電動汽車電池(英)2024_第1頁
英文關(guān)鍵材料:電動汽車電池(英)2024_第2頁
英文關(guān)鍵材料:電動汽車電池(英)2024_第3頁
英文關(guān)鍵材料:電動汽車電池(英)2024_第4頁
英文關(guān)鍵材料:電動汽車電池(英)2024_第5頁
已閱讀5頁,還剩144頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

CRITICALMATERIALS

BATTERIESFOR

ELECTRICVEHICLES

IIRENA

InternationalRenewableEnergyAgency

?IRENA2024

Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.

ISBN978-92-9260-626-8

Citation:IRENA(2024),Criticalmaterials:Batteriesforelectricvehicles,InternationalRenewableEnergyAgency,AbuDhabi.

AboutIRENA

TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergyinthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.

Acknowledgements

ThisreportwasauthoredbyIsaacElizondoGarcia,CarlosRuizandLuisJaneiro(IRENA)andMartinaLyons(ex-IRENA),underthedirectionofFranciscoBoshellandRolandRoesch(Director,IRENAInnovationandTechnologyCentre).

ValuableinputwasprovidedbyIRENAcolleaguesDeeptiSiddhanti,DoraLopez,JinleiFengandZhaoyuLewisWuandYongChen.

Thisreportbenefittedfromtheinputandcommentsofexperts,BryanBille(BenchmarkMineralsIntelligence),ClaudiaBrunori(ItalianNationalAgencyforNewTechnologies,EnergyandSustainableEconomicDevelopment),DanaCartwright(InternationalCouncilonMiningandMetals),DanielWeaver(DepartmentforEnergySecurityandNetZero,UK),DjiboSeydou(MinistryofMines,Niger),DolfGielen(WorldBank),KatherineShapiro(MinistryofEnergyandNaturalResources,Canada),MarcosIerides(Bax&Company),MarosHalama(InoBat),ShoraiKavu(MinistryofEnergyandPowerDevelopment,Zimbabwe),SilviaBobba(JointResearchCentre,EuropeanCommission)andYiheyisEshetu(MinistryofWaterandEnergy,Ethiopia).Thereportwascopy-editedbyFayreMakeigandtechnicalreviewprovidedbyPaulKomor.EditorialsupportwasprovidedbyFrancisFieldandStephanieClarke.GraphicdesignwasprovidedbyNachoSanz.

Forfurtherinformationortoprovidefeedback:publications@Thisreportisavailableat:/publications

Disclaimer

Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.

TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.

Coverphotos:?SergiiChernov/Sand?Varavin88/S

3

CONTENTS

FIgures,tablesandboxes 4

Abbreviations 6

Executivesummary 7

1.Introduction 15

2.DemandsupplyprospectsforEVbatterymaterials 18

2.1Theroleofelectricvehicles(EVs)intheenergytransition 18

2.2.DemandforEVbatterymaterials 20

2.3SupplyofEVbatterymaterials 30

3.Keyconsiderationsforpolicymakers 34

3.1.Resultsandconclusions 34

3.2.Recommendationsforpolicymakers 39

References 44

Annex1Supplydemandprospectspermaterial 50

Annex1.1.Lithium 50

Annex1.2.Cobalt 54

Annex1.3.Graphite 58

Annex1.4.Nickel 61

Annex1.5.Copper 64

Annex1.6.Phosphorous 67

Annex1.7.Manganese 70

Annex2Keyassumptions 73

CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES

4

FIGURES

Figure1Criticalmaterialsupplyanddemandin2023and2030 9

Figure2Sensitivityanalysisofsupply-demandbalancebasedonaveragebatterysizeand

batterychemistry 11

Figure3Volume-weightedaveragepricesplitforlithium-ionbatterypacksandcells,2013-2023

(realUSD2023/kWh) 16

Figure4Breakdownoftotalfinalenergyconsumptionbyenergycarrierunderthe1.5°CScenario,

2020-2050 18

Figure5EstimatedbatterydemandforEVsunderIRENA’s1.5°CScenariobysegment,

2023-2030 19

Figure6Batterysystemcomponentsandinternalcomponentsofabatterycell 20

Figure7Estimatedaveragecriticalmaterialmetalcontentofselectedlithium-ionEV

batterycathodes 21

Figure8GlobalEVbatterycathodechemistrymixesforpassengervehicles,2015-2023 22

Figure9GlobalEVbatteryanodechemistrymix,2015-2023 23

Figure10EstimatedaveragecriticalmaterialcompositionofselectedEVbatterypacks 24

Figure11Evolutionofhistoricalbatterychemistrymarketsharesforpassengervehicles,

2015-2022,andexplorativescenarios,2023-2030 27

Figure12EstimatedglobalshareofmaterialdemandfromEVbatteriesandotherapplications,

2022and2030 29

Figure13Regionallithium-ionbatterymanufacturingcapacityin2023andplanned

capacityfor2030 30

Figure14Materialsupplyin2023andrangeofestimatedsupplyin2030 32

Figure15Totalbatterymaterialexplorationexpenditure,2010-2023(real2023USDmillion) 33

Figure16Criticalmaterialsupplyanddemandin2023and2030 35

FigureA1.1LithiumdemandfromEVbatteriesandotherapplications,2022and2030 51

FigureA1.2LithiumdemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 51

FigureA1.3Lithiumsupplyanddemandin2023and2030 52

FigureA1.4Lithiumsupplyanddemandbalancein2030basedonbatterysizesensitivityanalysis 53

FigureA1.5CobaltdemandfromEVbatteriesandotherapplications,2022and2030 55

FigureA1.6CobaltdemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 55

FigureA1.7Cobaltsupplyanddemandin2023and2030 56

FigureA1.8Cobaltsupplyanddemandbalancein2030basedonbatterysizesensitivityanalysis 57

5

Figures,tablesandboxes

FigureA1.9GraphitedemandfromEVbatteriesandotherapplications,2022and2030 59

FigureA1.10GraphitedemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 59

FigureA1.11Graphitesupplyanddemandin2023and2030 60

FigureA1.12NickeldemandfromEVbatteriesandotherapplications,2022and2030 61

FigureA1.13NickeldemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 62

FigureA1.14Nickelsupplyanddemandin2023and2030 63

FigureA1.15RefinedcopperdemandfromEVbatteriesandotherapplications,2022and2030 64

FigureA1.16RefinedcopperdemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 65

FigureA1.17Refinedcoppersupplyanddemandin2023and2030 66

FigureA1.18PhosphorousdemandfromEVbatteriesandotherapplications,2022and2030 68

FigureA1.19PhosphorousdemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 68

FigureA1.20Phosphoroussupplyanddemandin2023and2030 69

FigureA1.21ManganesedemandfromEVbatteriesandotherapplications,2022and2030 70

FigureA1.22ManganesedemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 71

FigureA1.23Manganesesupplyanddemandin2023and2030 72

TABLES

Table1OverviewofglobalresourcesforselectedEVbatterycriticalmaterials 15

Table2OverviewofcriticalmaterialdemandfromEVbatteriesbyscenario,2030 34

Table3Overviewofoverallsupply-demandbalanceestimations 36

Table4Overviewofkeymaterials 37

TableA2.1GlobalaverageEVbatterysizepervehiclesegment,2022and2030 73

TableA2.2EVbatterychemistrymixforcars/SUVs/vansbyscenario,2030 73

TableA2.3EVbatterychemistrymixformotorcyclesbyscenario,2030 74

TableA2.4EVbatterychemistrymixforbusesbyscenario,2030 74

TableA2.5EVbatterychemistrymixfortrucksbyscenario,2030 74

TableA2.6MaterialcompositionassumedperEVbatterytype,2022 75

TableA2.7Materialcompositionassumedpersodium-ionbatterytype 75

CRITICALMATERIALS:batteriesForeleCtriCVeHiCles

6

BOXES

Box1Sodium-ionbatteries 25

Box2Historicinvestmentsinexploration 33

ABBREVIATIONS

BEVbatteryelectricvehicle

ESGenvironmental,socialandgovernanceEVelectricvehicle

GWhgigawatthour

IRENAInternationalRenewableEnergyAgency

kgkilogram

kWhkilowatthour

LCElithiumcarbonateequivalentLFPlithiumironphosphate

LMFPlithiummanganeseironphosphate

LMOlithiummanganeseoxide

Mtmilliontonnes

NCAnickelcobaltaluminiumoxide

NMCnickelmanganesecobaltoxide

NMCAnickelmanganesecobaltaluminiumoxide

PHEVplug-inhybridelectricvehicle

PPApurifiedphosphoricacid

R&Dresearchanddevelopment

SUVsportsutilityvehicle

Whwatthour

EXECUTIVESUMMARY

Advancingtheenergytransitionwillrequireelectricvehicles(EVs)todominatepassengervehiclesalesby2030.In2023,theglobalstockofpassengerEVsstoodatabout44million.AchievingtheInternationalRenewableEnergyAgency’s(IRENA’s)1.5°CScenariorequiressignificantgrowthoftheglobalstock,to359million,by2030.Thiselectrificationimperativeextendstoallroadtransportsectors,includingthosepreviouslydeemedunsuitableforelectrification,such

aslong-haulroadfreight.

WhiletheoutlookforEVbatteryproductioncapacityispositive,ensuringanadequate,reliableandaffordablesupplyofthenecessaryrawmaterialsisessential.InlinewithIRENA’s1.5°CScenario,theelectrificationofroadtransportwouldrequireEVbatteries’annualproductiontogrowfive-foldbetween2023and2030.Eventhoughthecurrentplannedbatteryproductioncapacityfor2030(7300gigawatthours[GWh]/year)exceedstheanticipateddemandforEVbatteries(4300GWh/year),concertedeffortsarestillneededtosecurethenecessaryrawmaterialsforthesebatteries.

IncreasingdemandforEVswoulddriveupdemandforthematerialsusedinEVbatteries,suchasgraphite,lithium,cobalt,copper,phosphorous,manganeseandnickel.UnderIRENA’s1.5°CScenario,thedemandforlithiumfromEVbatteriescouldroughlyquadruplefrom2023to2030.Similarly,thedemandforcobalt,graphiteandnickelcouldmorethantriple.However,innovationsenablingthesubstitutionofthesematerialsarealreadyreducingdemand;cobaltandnickelwerenolongerusedinnearlyhalfofthepassengerEVssoldin2023.

Whileresourceavailabilityisnotaconstraintforthelong-termdecarbonisationofroadtransport,effortsareneededtoquicklyandeffectivelyscaleupproductiontomeetgrowingdemandintheshorttomediumterm.AshighlightedinpreviousIRENApublications,long-termavailabilityisamatterofexpandingproductionvolumeandensuringdiversityofsupply(Gielen,2021;IRENA,2023a).Forinstance,theannualdemandforlithiumisestimatedtobe2.5-3.1milliontonnesperyear(Mt/year)by2030,withreservesandresourcesstandingat150Mtand560Mt,respectively,indicatingamplesupply(USGS,2024).

7

CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES

8

Effectivelynavigatinguncertaintiesintheshorttomediumtermrequiresregularmonitoringandassessmentofmarketdynamicsandtechnologicaladvancementsaswellasmodellingvariousscenarios.Onthedemandside,uncertaintiesprimarilyresultfrompoliciessupportingEVdeploymentandtheirimpactontheprojectedvolumeofEVsales;disruptiveinnovation;andtheevolvingmarketshareofdifferentanodeandcathodechemistries,eachcharacterisedbydistinctmaterialcompositions.Onthesupplyside,uncertaintiesstemfromfactorssuchasfluctuatingmarketprices,regulatorychangesandpotentialdisruptionsinthevaluechainduetofactorssuchasnaturaldisasters,geopoliticaltensionsortradedisputes.

IRENAhasdevelopedasupply-demandanalysistounderstandandexplorepotentialbottlenecksby2030,assumingalevelofEVdeploymentalignedwiththe1.5°CScenario.

Withinthiscontext,threebatterychemistryscenariosareexamined.Thefirstscenario,consideredaTechnologyStagnationscenario,assumeslimitedinnovationandacontinuedhighshareofnickel-richchemistries.Thesecondscenario,consideredacontinuationofCurrentTrends,exploresanincreasingdominanceoflithiumironphosphate(LFP)andlithiummanganeseironphosphate(LMFP)batteries.1Thethirdscenario,regardedasanIncreasedInnovationscenario,assumestheprominenceofLFPandLMFPalongsideasignificantincreaseinemergingsodium-iontechnology.Togaugethelikelihoodofasupply-demandgapundereachscenario,arangeofsupplyprojectionsfromotherorganisationsisconsidered.

EVbatteriesarenotdrivingthedemandforallcriticalmaterialsinEVs.Otherindustriesandapplicationsinfluencingthesematerials’availabilityandpricingshouldnotbeoverlooked.

ThedemandforEVbatteriesisamajordriverofdemandforlithium,and–toalesserextent-cobalt,graphiteandnickel.However,copper,withanapproximately4%demandsharefromEVbatteriesby2030,isprimarilydrivenbyconstructionandpower-relatedinfrastructure.Similarly,thedemandsharesforphosphorusandmanganesefromEVbatteriesareestimatedtobeabout3%andonlyabout2%,respectively,by2030.

Withsustainableexpansionofmaterialsupplychains,complementedbycontinuedinnovationinbatterychemistries,countriescanmeetthegrowingdemandforEVbatterymaterials.ThisispossibleevenunderaveryfastadoptionofEVs,inlinewitha1.5°Cdecarbonisationpathway.

Acriticalfactorwillbethescale-upofmaterialsupplyinlinewithcurrentlyavailableforecasts.Beyondthat,fasteradoptionofinnovativebatterieswithlowercriticalmaterialrequirements(e.g.LFP,LMFPandsodium-ion)couldfurthermitigatepotentialshortagesofsomematerials,evenifminingdoesnotscaleupasrapidlyasexpected.Abroadrangeofoutcomesispossibledependingontheevolutionofmaterialsupplycapacityandtheeffectsoftechnologyinnovation.Forinstance,potentiallithiumsurplusesareestimatedat0.60Mt/year,orabout25%oftheestimateddemandin2030,whileshortagescouldreachupto1.3Mt/year,representingabout40%oftheestimateddemandin2030(Figure1).

1LFPreferstolithiumironphosphatebatteries,andLMFPreferstolithiummanganeseironphosphatebatteries.

9

exeCutiVesummary

FIGURE1Criticalmaterialsupplyanddemandin2023and2030

Graphite

3.53.02.52.01.51.00.50.0

8

6

4

2

Mt/year

0

42

36

30

24

18

12

6

0

28

24

20

16

12

8

4

0

Lithium

Copper

Manganese

Nickel

Phosphorous

0.5

0.4

0.3

0.2

0.1

0.0

6

5

4

3

2

1

0

30

25

20

15

10

5

0

Cobalt

Supplyin2023

Lowdemandin2030 Lowsupplyin2030Syntheticgraphite

Highdemandin2030Highsupplyin2030

Sources:Lithium–supplyin2023basedonUSGS(2024);supplyin2030basedonAlbemarle(2023),BNEF(2024a),ETC(2023),FitchSolutions(2022),JimenezandSaez(2022)andS&PGlobal(2023).Cobalt–supplyin2023basedonUSGS(2024);supplyanddemandin2030basedonBNEF(2024a),CobaltBlueHoldings(2022),Darbar(2022),ETC(2023),Fu(2020),PattersonandRankumar(2023)andS&PGlobal(2023).Graphite–supplyin2023basedonUSGS(2024);supply

in2030basedonBlackRockMining(2023),ETC(2023)andWSJ(2023).Nickel–supplyin2023basedonUSGS(2024);supplyin2030basedonBNEF(2024b),ETC(2023)andS&PGlobal(2023).Copper–supplyin2023basedon

USGS(2024);supplyin2030basedonBNEF(2024b),ETC(2023)andS&PGlobal(2023).Phosphorous–supplyin2023basedonBrownlieetal.(2022)andUSGS(2024);supplyin2030basedonIRENAanalysis.Manganese–supplyin2023basedonUSGS(2024);supplyin2030basedonJupiterMines(2023)andMcKinsey(2022).

Notes:Supplyestimatesincludeannounced,plannedandpotentialsupply.Lithiumisexpressedintermsoflithiumcarbonateequivalent(LCE).Copperreferstorefinedcopper.Thevaluesforphosphorousrefertoelementalphosphorous.Mt=milliontonnes.

CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES

10

Bothbatterychemistryandbatterysizehaveasignificantimpactonthemarketdynamicsofcriticalmaterials.Figure2featuresthreegraphsforeachcriticalmaterial.Eachgraphrepresentsadifferentbatterychemistryscenario.Thegraphsplotthepotentialmarketbalanceonthey-axisagainstvariousbatterysizesonthex-axis.Theyshowcasehoweachfactorcontributestosupply-demandrelationshipsforcriticalmaterials.TheaveragesizeofEVbatteries,estimatedtoplateauatabout57kilowatthours(kWh),iscrucialasitdirectlycorrelateswiththedemandforbatterymaterials(BNEF,2024a;Krishna,2023).ThesensitivityanalysisdepictedinFigure2considersarangeofestimatedsupplyandusecolourcoding:theyellowareaindicatespotentialmarketshortfalls,whilethegreenareahighlightspotentialsurpluses.Orangedotsrepresentthemarketbalanceunderconditionsoflowsupply,whilegreendotsdenotethebalanceunderhigh-supplyscenarios.

LITHIUM

NICKEL

COBALT

COPPER

MANGANESE

GRAPHITE

PHOSPHOROUS

11

exeCutiVesummary

FIGURE2Sensitivityanalysisofsupply-demandbalancebasedonaveragebatterysizeand

batterychemistry

TechnologyStagnationscenarioCurrentTrendsscenarioIncreasedInnovationscenario

1.501.000.500.00-0.50-1.00-1.50

Lithium(LCE)

0.250.200.150.100.050.00-0.05-0.10-0.15-0.20-0.25

Mt

3.00

1.50

0.00

-1.50

-3.00

Cobalt

Graphite

2.001.501.000.500.00-0.50-1.00-1.50-2.00

Nickel

505560657050556065705055606570

kWh

oDe?citoSurplusoLowsupplyoHighsupply

Notes:kWh=kilowatthour;LCE=lithiumcarbonateequivalent;Mt=milliontonnes.

CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES

12

Basedontheanalysisoffactorsaffectingbothsupplyanddemandby2030,thefollowingperspectivesarepresentedforeachmaterial:

?Thedemandforlithiumremainslargelyunaffectedbythechoiceofbatterychemistry,sincemostEVbatterytechnologiesdependonit.Sodium-ionbatteries,whichdonotrelyonlithium,mayentertheEVbatterymarketlaterinthedecade,buttheirimpactonreducinglithiumdemandwilllikelybemoresignificantafter2030.Long-termavailabilityoflithiumisnotaconstraint.Instead,addressingpotentiallithiumdeficitswillsignificantlyrelyonexpandingthesupplychainorreducingdemandthroughimprovementoftheenergydensity2ofexistinglithium-ionbatteries.

?CobaltcanbesubstitutedwiththeintegrationoftechnologiessuchasLFPandLMFP,rapidlyreducingcobalt’scriticalityforroadtransportelectrification.However,cobaltsupplyshortfallscouldbepossibleinscenarioswherecobalt-containingbatteries,suchasnickelmanganese

cobaltoxide(NMC)andnickelcobaltaluminiumoxide(NMCA),remainwidespread.

?Basedoncurrentsupplyprojections,naturalgraphitewilllikelybeinsufficienttomeetallexpectedgraphitedemandby2030.Syntheticgraphite,althoughmoreenergyintensive,couldbescaleduptobridgethesupplygap.Beyondthat,atransitiontowardsanodeswithincreasedsiliconcontentisalreadyoccurringandcouldfurtherreducepressureonthematerial.

?NickeldemandhasalreadybeencontainedbytheriseofLFPandLMFPbatteries.Afurthertransitionfromnickel-richbatteriestootherchemistrieswouldmakesupplyshortagesunlikely,unlessthesupplymaterialisesatthelowerendofthecurrentsupplyprojectionsrange.

?Thedemandforcopper,phosphorousandmanganesefromtheEVmarketisexpectedtorepresentonlyasmallshareofglobaldemandforthesematerials.Therefore,itsimpactonshapingsupplyanddemanddynamicswillberelativelyminorcomparedwithdemandfromlargersectors.However,addressingissuessurroundingbattery-gradepurifiedphosphoricacidandhigh-puritymanganesesulphateemergesasthemostpressingconcern,requiringconcertedactionstorapidlyexpandtheirsupplychains.

Innovationhasalreadydecreasedthedemandforcriticalmaterialssignificantly.Forinstance,LFPbatteries,whichhadasingle-digitmarketsharein2015,capturedanestimated44%ofthepassengervehiclemarketin2023.Projecting2023’scobaltandnickeldemandfiveyearsprior–consideringthemixofbatterychemistriesatthetime–wouldhaveledtosignificantoverestimationsofdemand.Forinstance,cobaltandnickeldemandfromEVbatterieswouldhavebeenabout50%higher.

2Inthisreport,energydensityreferstogravimetricenergydensity.

13

exeCutiVesummary

AdvancesinEVbatterytechnologyhavealsoimprovedgravimetricenergydensitysignificantly,a30%increase,onaverage,forbatterycellsand60%forbatterypacksoverthepastdecade(BNEF,2024).Theseadvancesnotonlyboostenergyperformanceanddrivedowncosts,theyalsoplayasignificantroleinreducingmaterialdemand.Furtherimprovementsarestillpossible.Forinstance,ContemporaryAmperexTechnologyCo.,Limited(CATL)andNorthvolthavedevelopedasodium-ionbatterywithanenergydensityof160watthourperkilogramme(Wh/kg);theyareplanningforthenextgenerationtoexceed200Wh/kg(CATL,2023;Northvolt,2023).Moreover,CATLhasunveiledacondensedbatterycell,which,throughchemicalanddesigninnovation,isabletoachieveagravimetricenergydensityof500Wh/kg(CATL,2023).Thismarkedlysurpassesthetypicalenergydensityof250-300Wh/kginnickel-richbatteries(Ringbeck,2024).Designpresentsanotheravenueforinnovation.Forexample,BYDhascommercialisedthecell-to-packtechnologyandisnowadvancingtocell-to-bodytechnology.Thislatestapproachfurtherincreasesenergydensitybyintegratingbatterycellsdirectlyintoacar’sbody,therebycompletelyeliminatingtheneedforatraditionalbatterypack(BYD,2023;WEF,2023).

Innovationemergesasthecentralcomponentinaddressingpotentialbottlenecks,offeringpathwaystoreducedemandandbolstersupply.Amonginnovations,advancementsinEVbatterycathodes,notablyLFPandLMFP,alongsideemergingtechnologies,suchassodium-ion,couldalleviate,ifnotentirelyeliminate,thedemandforsomematerials.ContinuousimprovementinenergydensitythroughinnovativedesignandengineeringcouldpositionLFPandLMFPaschallengerstonickel-richbatteries’dominanceinhigh-endEVmarketsegments.Overcomingsodium-iontechnology’schallengescouldleadtostructuraladvancements,bypartiallyorcompletelyeliminatingtheneedforsomematerials,forexample,lithium,cobaltandgraphite.Moreover,innovationinminingandprocessingcouldalleviatepressuresonthesupplyside,enablingtimely,cost-effectiveandsustainableproductionofmaterials.

ThisreportdetailsseveralactionsforgovernmentsandstakeholdersacrosstheEVbatterysupplychaintoensureanadequate,reliable,sustainableandaffordablesupplyofcriticalmaterialsforEVbatteriesby2030.

Toaddresspotentialmaterialbottlenecks,governmentscanplayakeyroleinacceleratingandsupportinginnovationaimedatreducingoreliminatingtheuseofcriticalmaterialsinEVbatteries.Examplesofpossibleinnovationsincludeadvancementsincathodeandanodetechnologies,andimprovementsinbatterydesignandengineeringtoboostenergydensityandreducematerialuse.GiventherapidevolutionofEVbatterytechnologies,governments,miningandprocessingcompanies,andbatterymanufacturerscanmonitormarketscloselyandfrequentlyandincreaseindustryengagementtostayabreastofthelatesttrendsandbreakthroughsininnovation.GovernmentsmayalsofacilitateareductionofcriticalmaterialdemandbysupportingtheaccelerateddeploymentofEVcharginginfrastructure,supportingtheadoptionofEVswithsma

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論