版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
四川省資陽市樂至縣良安中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則n的值為()A.7 B.8C.9 D.102.已知隨機變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.763.已知,則“”是“直線與平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.從某個角度觀察籃球(如圖1),可以得到一個對稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓O的交點將圓O的周長八等分,AB=BC=CD,則該雙曲線的離心率為()A. B.C. D.5.在三棱錐中,,,,若,,則()A. B.C. D.6.已知點,,若直線過點且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.7.已知斜率為1的直線與橢圓相交于A、B兩點,O為坐標(biāo)原點,AB的中點為P,若直線OP的斜率為,則橢圓C的離心率為()A. B.C. D.8.礦山爆破時,在爆破點處炸開的礦石的運動軌跡可看作是不同的拋物線,根據(jù)地質(zhì)、炸藥等因素可以算出這些拋物線的范圍,這個范圍的邊界可以看作一條拋物線,叫“安全拋物線”,如圖所示.已知某次礦山爆破時的安全拋物線的焦點為,則這次爆破時,礦石落點的最遠處到點的距離為()A. B.2C. D.9.拋物線的準(zhǔn)線方程是,則a的值為()A.4 B.C. D.10.已知橢圓的左右焦點分別為,,點B為短軸的一個端點,則的周長為()A.20 B.18C.16 D.911.已知函數(shù),其中e是自然數(shù)對數(shù)的底數(shù),若,則實數(shù)a的取值范圍是A. B.C. D.12.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.半徑為R的圓外接于,且,若,則面積的最大值為________.14.經(jīng)過點,,的圓的方程為______.15.底面半徑為1,母線長為2的圓錐的體積為______16.已知等比數(shù)列滿足:,,,則公比______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求下列不等式的解集:(1);(2).18.(12分)如圖,多面體中,平面平面,,四邊形為平行四邊形.(1)證明:;(2)若,求二面角的余弦值.19.(12分)已知橢圓的一個焦點是,且離心率.(1)求橢圓的方程;(2)設(shè)過點的直線交于兩點,線段的垂直平分線交軸于點,求的取值范圍.20.(12分)已知:,:.(1)當(dāng)時,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.21.(12分)已知數(shù)列的前n項和為,且滿足(1)證明數(shù)列是等比數(shù)列;(2)若數(shù)列滿足,證明數(shù)列的前n項和22.(10分)如圖1,已知矩形ABCD,,,E,F(xiàn)分別為AB,CD的中點,將ABCD卷成一個圓柱,使得BC與AD重合(如圖2),MNGH為圓柱的軸截面,且平面平面MNGH,NG與曲線DE交于點P(1)證明:平面平面MNGH;(2)判斷平面PAE與平面PDH夾角與的大小,并說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)給定條件利用組合數(shù)的性質(zhì)計算作答【詳解】因為,則由組合數(shù)性質(zhì)有,即,所以n的值為10.故選:D2、A【解析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.【詳解】因隨機變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對稱性得:,所以的值為0.24.故選:A3、A【解析】首先由兩直線平行的充要條件求出參數(shù)的取值,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】因為直線與平行,所以,解得或,所以“”是“直線與平行”的充分不必要條件.故選:A.4、D【解析】設(shè)出雙曲線方程,通過做標(biāo)準(zhǔn)品和雙曲線與圓O的交點將圓的周長八等分,且AB=BC=CD,推出點在雙曲線上,然后求出離心率即可.【詳解】設(shè)雙曲線的方程為,則,因為AB=BC=CD,所以,所以,因為坐標(biāo)軸和雙曲線與圓O的交點將圓O的周長八等分,所以在雙曲線上,代入可得,解得,所以雙曲線的離心率為.故選:D5、B【解析】根據(jù)空間向量的基本定理及向量的運算法則計算即可得出結(jié)果.【詳解】連接,因為,所以,因為,所以,所以,故選:B6、B【解析】直接利用兩點間的坐標(biāo)公式和直線的斜率的關(guān)系求出結(jié)果【詳解】解:直線過點且斜率為,與連接兩點,的線段有公共點,由圖,可知,,當(dāng)時,直線與線段有交點故選:B7、B【解析】這是中點弦問題,注意斜率與橢圓a,b之間的關(guān)系.【詳解】如圖:依題意,假設(shè)斜率為1的直線方程為:,聯(lián)立方程:,解得:,代入得,故P點坐標(biāo)為,由題意,OP的斜率為,即,化簡得:,,,;故選:B.8、D【解析】根據(jù)給定條件求出拋物線的頂點,結(jié)合拋物線的性質(zhì)求出p值即可計算作答.【詳解】依題意,拋物線的頂點坐標(biāo)為,則拋物線的頂點到焦點的距離為,p>0,解得,于是得拋物線的方程為,由得,,即拋物線與軸的交點坐標(biāo)為,因此,,所以礦石落點的最遠處到點的距離為.故選:D9、C【解析】先求得拋物線的標(biāo)準(zhǔn)方程,可得其準(zhǔn)線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標(biāo)準(zhǔn)方程為,準(zhǔn)線方程為,又準(zhǔn)線方程是,所以,所以.故選:C10、B【解析】根據(jù)橢圓的定義求解【詳解】由橢圓方程知,所以,故選:B11、B【解析】利用函數(shù)的奇偶性將函數(shù)轉(zhuǎn)化為f(M)≤f(N)的形式,再利用單調(diào)性脫去對應(yīng)法則f,轉(zhuǎn)化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉(zhuǎn)化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調(diào)遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點睛】本題考查了函數(shù)的奇偶性和單調(diào)性的判定及應(yīng)用,考查了不等式的解法,屬于中檔題12、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時,,所以單調(diào)遞減,排除選項A、B,當(dāng)時,先正后負(fù),所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用正弦定理將已知條件轉(zhuǎn)化為邊之間的關(guān)系,然后用余弦定理求得C;利用三角形面積公式,結(jié)合兩角差的正弦函數(shù)公式和二倍角公式得,再利用輔助角公式得,最后利用函數(shù)的值域計算得結(jié)論.【詳解】因為所以由正弦定理得:,即,所以由余弦定理可得:,又,故.由正弦定理得:,,所以,所以當(dāng)時,S最大,.若,則面積的最大值為.故答案為:.【點睛】本題考查了兩角和與差的三角函數(shù)公式,二倍角公式及應(yīng)用,正弦定理,余弦定理,三角形面積公式,函數(shù)的圖象與性質(zhì),屬于中檔題.14、【解析】設(shè)所求圓的方程為,然后將三個點的坐標(biāo)代入方程中解方程組求出的值,可得圓的方程【詳解】設(shè)所求圓的方程為,則,解得,所以圓的方程為,即,故答案為:15、【解析】先由勾股定理求圓錐的高,再結(jié)合圓錐的體積公式運算即可得解.【詳解】解:設(shè)圓錐的高為,由勾股定理可得,由圓錐的體積可得,故答案為.【點睛】本題考查了圓錐的體積公式,重點考查了勾股定理,屬基礎(chǔ)題.16、【解析】根據(jù)等比數(shù)列的通項公式可得,結(jié)合即可求出公比.【詳解】設(shè)等比數(shù)列的公式為q,則,即,解得,又,所以,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)一元二次不等式的解法求得不等式的解集.(2)根據(jù)分式不等式的解法求得不等式的解集.【小問1詳解】不等式等價于,解得.∴不等式的解集為.【小問2詳解】不等式等價于,解得或.∴不等式的解集為.18、(1)證明見解析(2)【解析】(1)先通過平面平面得到,再結(jié)合,可得平面,進而可得結(jié)論;(2)取的中點,的中點,連接,,以點為坐標(biāo)原點,分別以,,為軸,軸,軸建立空間直角坐標(biāo)系,求出平面的一個法向量以及平面的一個法向量,求這兩個法向量的夾角即可得結(jié)果.【詳解】解:(1)因為平面平面,交線為,又,所以平面,,又,,則平面,平面,所以,;(2)取的中點,的中點,連接,,則平面,平面;以點坐標(biāo)原點,分別以,,為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,已知,則,,,,,,則,,設(shè)平面的一個法向量,由得令,則,,即;平面的一個法向量為;.所以二面角的余弦值為.【點睛】本題考查線線垂直的證明以及空間向量發(fā)求面面角,考查學(xué)生計算能力以及空間想象能力,是中檔題.19、(1)(2)【解析】(1)由條件可得,,然后可得答案;(2)設(shè)直線的方程為,,聯(lián)立直線與橢圓的方程消元,然后算出中點的坐標(biāo),然后可得線段的垂直平分線方程,然后可得,然后可求出答案.【小問1詳解】因為橢圓的一個焦點是,且離心率所以,,所以所以橢圓的方程為【小問2詳解】顯然直線的斜率不為0,設(shè)直線的方程為,聯(lián)立可得,所以所以中點的縱坐標(biāo)為,橫坐標(biāo)為所以線段的垂直平分線方程為令,可得當(dāng)時,當(dāng)時,,因為,所以綜上:20、(1);(2).【解析】(1)將代入即可求解;(2)首先結(jié)合已知條件分別求出命題和的解,寫出,然后利用充分不必要的特征即可求解.【詳解】(1)由題意可知,,解得,故實數(shù)的取值范圍為;(2)由,解得或,由,解得,故命題:或;命題:,從而:或,因為是的充分不必要條件,所以或或,從而,解得,故實數(shù)的取值范圍為.21、(1)證明見解析(2)證明見解析【解析】(1)可根據(jù)已知的與的遞推關(guān)系,利用求解出數(shù)列的首項,然后當(dāng)時,遞推做差,利用消掉,即可得到與之間的關(guān)系,從而完成證明;(2)利用第(1)問求解出的數(shù)列的通項公式,帶入到中,再使用錯位相減法進行求和,根據(jù)最后計算的結(jié)果與比較即可完成證明.【小問1詳解】由題意得,當(dāng)時,,∴,當(dāng)時,,∴,∵,∴,于是有,故數(shù)列是以3為首項,3為公比的等比數(shù)列.得證.【小問2詳解】由(1)可知,∴,,①,②,②?①得:,∴,∵,故,∴得證.22、(1)證明見解析(2)平面PAE與平面PDH夾角大于,理由見解析【解析】(1)由面面垂直證明,然后得證平面MNGH后可得面面垂直;(2)建立如圖所示的空間直角坐標(biāo)系,用空間向量法求出二面角的余弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 政府安全生產(chǎn)合同模板
- 小型船舶購買合同模板
- 車位網(wǎng)簽合同模板
- 超市個人進貨合同模板
- 廈門借租房合同模板
- 2024年家居軟裝定制服務(wù)協(xié)議版
- 草原風(fēng)情賞析語文六年級上冊課文深度解讀
- 2024年度企業(yè)員工商業(yè)秘密保護協(xié)議版
- 球形連桿課程設(shè)計
- 婦產(chǎn)超聲知識講座
- 【單元專項】人教PEP版五年級上冊英語-Unit 2 My week 閱讀(含答案)
- 高思學(xué)校競賽數(shù)學(xué)課本五年級
- 終期預(yù)評估報告
- 膠東國際機場
- 關(guān)鍵時刻的決策力
- 上海交通大學(xué)電子信息與電氣工學(xué)學(xué)院本科生課表
- 水工建筑物課程設(shè)計任務(wù)和指導(dǎo)書
- 蛋白的分離純化
- 16開(19x26)獎狀打印模版
- 大班健康《預(yù)防手足口病》課件
評論
0/150
提交評論