版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第14講三角函數(shù)的圖像和性質(zhì)學(xué)校____________姓名____________班級____________一、知識梳理1.用五點法作正弦函數(shù)和余弦函數(shù)的簡圖(1)正弦函數(shù)y=sinx,x∈[0,2π]的圖像中,五個關(guān)鍵點是:(0,0),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),1)),(π,0),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2),-1)),(2π,0).(2)余弦函數(shù)y=cosx,x∈[0,2π]的圖像中,五個關(guān)鍵點是:(0,1),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),0)),(π,-1),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2),0)),(2π,1).2.正弦、余弦、正切函數(shù)的圖像與性質(zhì)(下表中k∈Z)函數(shù)y=sinxy=cosxy=tanx圖像定義域RR{xeq\b\lc\|(\a\vs4\al\co1(x∈R,且))x≠kπ+eq\f(π,2)}值域[-1,1][-1,1]R最小正周期2π2ππ奇偶性奇函數(shù)偶函數(shù)奇函數(shù)遞增區(qū)間eq\b\lc\[(\a\vs4\al\co1(2kπ-\f(π,2),))eq\b\lc\\rc\](\a\vs4\al\co1(2kπ+\f(π,2)))[2kπ-π,2kπ]eq\b\lc\((\a\vs4\al\co1(kπ-\f(π,2),))eq\b\lc\\rc\)(\a\vs4\al\co1(kπ+\f(π,2)))遞減區(qū)間eq\b\lc\[(\a\vs4\al\co1(2kπ+\f(π,2),))eq\b\lc\\rc\](\a\vs4\al\co1(2kπ+\f(3π,2)))[2kπ,2kπ+π]無對稱中心(kπ,0)eq\b\lc\(\rc\)(\a\vs4\al\co1(kπ+\f(π,2),0))eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(kπ,2),0))對稱軸方程x=kπ+eq\f(π,2)x=kπ無考點和典型例題1、三角函數(shù)的定義域和值域【典例1-1】(2022·河北邯鄲·二模)函數(shù)SKIPIF1<0在SKIPIF1<0上的值域為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0取最大值1,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0取最小值大于SKIPIF1<0,故值域為SKIPIF1<0故選:C【典例1-2】(2022·遼寧·東港市第二中學(xué)高一期中)函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】解:函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0一個為SKIPIF1<0的最大值,一個為最小值,則SKIPIF1<0,或SKIPIF1<0解得SKIPIF1<0,或SKIPIF1<0所以SKIPIF1<0(i),或SKIPIF1<0(ii)對于(i),當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值是SKIPIF1<0,對于(ii),當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值是SKIPIF1<0,綜上,SKIPIF1<0的最小值是SKIPIF1<0,故選:D【典例1-3】(2022·全國·模擬預(yù)測(文))已知函數(shù)SKIPIF1<0,則下列結(jié)論中正確的是(
)A.函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0 B.SKIPIF1<0時SKIPIF1<0取得最小值C.SKIPIF1<0關(guān)于SKIPIF1<0對稱 D.SKIPIF1<0時SKIPIF1<0取得最大值【答案】D【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的最小正周期SKIPIF1<0,A錯誤,SKIPIF1<0,BC錯誤,SKIPIF1<0,D正確.故選:D.【典例1-4】(2022·陜西·西北工業(yè)大學(xué)附屬中學(xué)模擬預(yù)測(理))已知不等式SKIPIF1<0對SKIPIF1<0恒成立,則m的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】解:因為不等式SKIPIF1<0對SKIPIF1<0恒成立,所以不等式SKIPIF1<0對SKIPIF1<0恒成立,令SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以m的最小值為SKIPIF1<0,故選:D【典例1-5】(2022·重慶八中高三階段練習(xí))函數(shù)SKIPIF1<0在SKIPIF1<0上的值域是SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,要使f(x)在SKIPIF1<0上的值域是SKIPIF1<0,則SKIPIF1<0.故選:C.2、三角函數(shù)的周期性、奇偶性、對稱性【典例2-1】(2022·山東威?!と#┘褐瘮?shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0(
)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】∵f(x)定義域為R,且為偶函數(shù),∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0為偶函數(shù)滿足題意.故選:C.【典例2-2】(2022·天津和平·三模)函數(shù)SKIPIF1<0,將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0為偶函數(shù),則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因為SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0的最小值是SKIPIF1<0.故選:B.【典例2-3】(2022·內(nèi)蒙古赤峰·三模(文))已知函數(shù)SKIPIF1<0的圖像經(jīng)過點SKIPIF1<0,則SKIPIF1<0的最小正周期為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因為函數(shù)SKIPIF1<0的圖像經(jīng)過點SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最小正周期為SKIPIF1<0,故選:C【典例2-4】(2022·陜西西安·一模(理))若函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,則SKIPIF1<0是(
)A.奇函數(shù) B.偶函數(shù)C.非奇非偶函數(shù) D.是奇函數(shù)也是偶函數(shù)【答案】B【詳解】因為函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,解得SKIPIF1<0,所以,SKIPIF1<0,所以,函數(shù)SKIPIF1<0為偶函數(shù).故選:B.【典例2-5】(2022·新疆克拉瑪依·三模(文))已知函數(shù)SKIPIF1<0的最小值周期為SKIPIF1<0,將SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度,所得圖象關(guān)于SKIPIF1<0軸對稱,則SKIPIF1<0的一個值是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題可得SKIPIF1<0,即SKIPIF1<0,則函數(shù)的解析式為SKIPIF1<0,將SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度所得的函數(shù)解析式為:SKIPIF1<0SKIPIF1<0,又函數(shù)圖象關(guān)于SKIPIF1<0軸對稱,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0①,令SKIPIF1<0,可得:SKIPIF1<0,其余選項不適合①式.故選:B.3、三角函數(shù)的單調(diào)性【典例3-1】(2022·天津南開·三模)將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位,得到函數(shù)SKIPIF1<0的圖象,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的值可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.4【答案】B【詳解】解:將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位,得到函數(shù)SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,又因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得,SKIPIF1<0所以SKIPIF1<0的值可能為SKIPIF1<0,故選:B【典例3-2】(2022·湖北·荊州中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0最大值為SKIPIF1<0.故選:B.【典例3-3】(2022·全國·模擬預(yù)測(文))將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度,再保持所有點的縱坐標不變,橫坐標縮短為原來的SKIPIF1<0倍,得到函數(shù)SKIPIF1<0的圖象,則使得SKIPIF1<0單調(diào)遞增的一個區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度,再保持所有點的縱坐標不變,橫坐標縮短為原來的SKIPIF1<0倍,得到函數(shù)SKIPIF1<0的圖象,則SKIPIF1<0,則SKIPIF1<0單調(diào)遞增區(qū)間為:SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0.故選:C.【典例3-4】(2022·安徽·合肥一中模擬預(yù)測(文))下列函數(shù)中,既是偶函數(shù),又在區(qū)間SKIPIF1<0內(nèi)是增函數(shù)的為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】A.因為SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故正確;B.SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),易知SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,故錯誤;C.SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),易知SKIPIF1<0在SKIPIF1<0上遞減,故錯誤;D.因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0不是偶函數(shù),故錯誤;故選:A【典例3-5】(2022·全國·高三專題練習(xí))將函數(shù)SKIPIF1<0圖象上所有點的橫坐標縮短到原來的SKIPIF1<0倍SKIPIF1<0縱坐標不變SKIPIF1<0,再向左平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】解:將函數(shù)SKIPIF1<0圖象上所有點的橫坐標縮短到原來的SKIPIF1<0倍SKIPIF1<0縱坐標不變SKIPIF1<0,得到SKIPIF1<0,再向左平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖象,即SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的周期SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.【典例3-6】(2022·河北·石家莊二中模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)增區(qū)間;(2)若SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西郵電職業(yè)技術(shù)學(xué)院《人工智能營銷》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024至2030年紙塑熱燙印箔項目投資價值分析報告
- 接稿作品合同范例
- 2024至2030年煙道熱電偶項目投資價值分析報告
- 陜西藝術(shù)職業(yè)學(xué)院《生物制藥》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024至2030年全自動微處理器高溫總烴分析儀項目投資價值分析報告
- 副經(jīng)理合同范例
- 2024年私人危房重建與購買合同3篇
- 施工單位科研合同范例
- 作業(yè)合同范例商品供應(yīng)
- 全能值班員集控面試題
- 大班音樂《歡樂頌》課件
- 第三方支付合作協(xié)議
- Unit+6+Lesson+1+A+Medical+Pioneer+課件【 核心知識備課精研精講】 高中英語北師大版(2019)必修第二冊
- 幼兒園大班春季周計劃表(整學(xué)期)
- 《走遍法國》Reflets課文
- 土地增值稅清算管理規(guī)程
- 大學(xué)生心理健康教育-大學(xué)生心理健康導(dǎo)論
- 糖尿病病人的麻醉
- GB/T 29309-2012電工電子產(chǎn)品加速應(yīng)力試驗規(guī)程高加速壽命試驗導(dǎo)則
- GB 29216-2012食品安全國家標準食品添加劑丙二醇
評論
0/150
提交評論