惠州工程職業(yè)學(xué)院《數(shù)值分析B》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
惠州工程職業(yè)學(xué)院《數(shù)值分析B》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
惠州工程職業(yè)學(xué)院《數(shù)值分析B》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
惠州工程職業(yè)學(xué)院《數(shù)值分析B》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
惠州工程職業(yè)學(xué)院《數(shù)值分析B》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁惠州工程職業(yè)學(xué)院

《數(shù)值分析B》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在對一個社交媒體平臺的用戶興趣數(shù)據(jù)進(jìn)行分析,例如關(guān)注的話題、參與的討論組等,以進(jìn)行精準(zhǔn)的廣告投放。以下哪種數(shù)據(jù)挖掘技術(shù)可能在用戶畫像和廣告定向中發(fā)揮重要作用?()A.分類算法B.聚類算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都是2、在進(jìn)行數(shù)據(jù)分析時,如果數(shù)據(jù)不符合正態(tài)分布,以下哪種統(tǒng)計方法可能不再適用?()A.t檢驗(yàn)B.方差分析C.線性回歸D.以上都是3、在時間序列數(shù)據(jù)分析中,除了預(yù)測未來值,還可以進(jìn)行季節(jié)性分析。假設(shè)我們有一個銷售數(shù)據(jù)的時間序列,顯示出明顯的季節(jié)性特征,以下哪種方法可以用于提取和分析季節(jié)性成分?()A.季節(jié)指數(shù)法B.移動平均季節(jié)分解法C.加法模型D.以上都是4、數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量問題會影響分析結(jié)果的準(zhǔn)確性和可靠性。以下關(guān)于數(shù)據(jù)質(zhì)量的說法中,錯誤的是?()A.數(shù)據(jù)質(zhì)量包括準(zhǔn)確性、完整性、一致性、時效性等多個方面B.數(shù)據(jù)質(zhì)量問題可以通過數(shù)據(jù)清洗、驗(yàn)證和監(jiān)控等方法來解決C.提高數(shù)據(jù)質(zhì)量需要從數(shù)據(jù)的采集、存儲、處理等各個環(huán)節(jié)入手D.一旦數(shù)據(jù)進(jìn)入數(shù)據(jù)倉庫,就不需要再關(guān)注數(shù)據(jù)質(zhì)量問題了5、在處理大規(guī)模數(shù)據(jù)時,分布式計算框架能夠提高計算效率。假設(shè)要對數(shù)十億條的用戶行為數(shù)據(jù)進(jìn)行分析,需要快速完成復(fù)雜的計算任務(wù)。以下哪個分布式計算框架在處理這種海量數(shù)據(jù)時更具優(yōu)勢?()A.HadoopB.SparkC.FlinkD.Storm6、在數(shù)據(jù)分析中,建立回歸模型用于預(yù)測是常見的任務(wù)。假設(shè)我們要根據(jù)房屋的面積、位置和房齡等因素來預(yù)測房價,以下哪種回歸模型可能在這種情況下表現(xiàn)較好?()A.線性回歸B.邏輯回歸C.多項式回歸D.嶺回歸7、在數(shù)據(jù)分析的異常檢測中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計的方法,設(shè)定閾值判斷異常B.基于距離的方法,計算數(shù)據(jù)點(diǎn)之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進(jìn)行異常檢測,認(rèn)為所有交易都是正常的8、在進(jìn)行數(shù)據(jù)分析時,如果數(shù)據(jù)分布呈現(xiàn)右偏態(tài),以下哪種統(tǒng)計量更能代表數(shù)據(jù)的集中趨勢?()A.均值B.中位數(shù)C.眾數(shù)D.標(biāo)準(zhǔn)差9、在進(jìn)行數(shù)據(jù)分析的實(shí)驗(yàn)時,交叉驗(yàn)證是常用的評估模型穩(wěn)定性的方法。假設(shè)你在比較不同的分類算法,以下關(guān)于交叉驗(yàn)證策略的選擇,哪一項是最合理的?()A.簡單隨機(jī)劃分?jǐn)?shù)據(jù)集,進(jìn)行多次訓(xùn)練和驗(yàn)證B.使用K折交叉驗(yàn)證,平均多個結(jié)果以獲得更可靠的評估C.采用留一法交叉驗(yàn)證,確保每個樣本都被用于驗(yàn)證D.不進(jìn)行交叉驗(yàn)證,只進(jìn)行一次訓(xùn)練和驗(yàn)證10、對于一個包含多個變量的數(shù)據(jù)集,若要找出變量之間的潛在結(jié)構(gòu)關(guān)系,以下哪種方法較為有效?()A.主成分分析B.判別分析C.對應(yīng)分析D.典型相關(guān)分析11、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時,可能會遇到數(shù)據(jù)不一致的問題。假設(shè)你要將銷售數(shù)據(jù)和客戶數(shù)據(jù)進(jìn)行關(guān)聯(lián),以下關(guān)于處理數(shù)據(jù)不一致的方法,哪一項是最恰當(dāng)?shù)??()A.忽略不一致的數(shù)據(jù),只關(guān)聯(lián)一致的部分B.手動修正不一致的數(shù)據(jù),確保關(guān)聯(lián)的準(zhǔn)確性C.使用數(shù)據(jù)轉(zhuǎn)換和映射規(guī)則,將不一致的數(shù)據(jù)統(tǒng)一D.不進(jìn)行關(guān)聯(lián),直接分別分析兩組數(shù)據(jù)12、在數(shù)據(jù)分析中,時間序列分析用于處理隨時間變化的數(shù)據(jù)。假設(shè)要預(yù)測股票價格的未來走勢,以下關(guān)于時間序列分析的描述,哪一項是不準(zhǔn)確的?()A.移動平均法可以平滑數(shù)據(jù),去除短期波動,突出長期趨勢B.指數(shù)平滑法能夠根據(jù)歷史數(shù)據(jù)的權(quán)重對未來進(jìn)行預(yù)測,近期數(shù)據(jù)的權(quán)重通常較大C.自回歸整合移動平均(ARIMA)模型可以捕捉時間序列的線性和季節(jié)性特征D.時間序列分析能夠準(zhǔn)確預(yù)測股票價格的未來值,不受市場不確定性和突發(fā)事件的影響13、在數(shù)據(jù)庫設(shè)計中,若要存儲學(xué)生的課程成績,以下哪種數(shù)據(jù)類型較為合適?()A.整數(shù)型B.浮點(diǎn)型C.字符型D.日期型14、數(shù)據(jù)分析中的數(shù)據(jù)降維技術(shù)常用于減少數(shù)據(jù)的維度,同時保留重要信息。假設(shè)你有一個高維的數(shù)據(jù)集,包含眾多特征。以下關(guān)于數(shù)據(jù)降維方法的選擇,哪一項是最需要考慮的因素?()A.降維后的結(jié)果是否易于解釋和可視化B.降維方法的計算復(fù)雜度和效率C.降維過程中是否會丟失關(guān)鍵的信息D.降維方法是否新穎和熱門15、在數(shù)據(jù)分析項目中,需要對兩個不同來源的數(shù)據(jù)集進(jìn)行整合和融合,例如一個是銷售數(shù)據(jù),另一個是客戶信息數(shù)據(jù)。由于兩個數(shù)據(jù)集的格式和字段可能不一致,以下哪種方法可能有助于順利完成數(shù)據(jù)整合?()A.手動匹配和轉(zhuǎn)換B.使用數(shù)據(jù)清洗工具C.建立數(shù)據(jù)倉庫D.以上都是16、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個假設(shè)。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的考試成績,需要進(jìn)行嚴(yán)格的假設(shè)檢驗(yàn)。以下哪種假設(shè)檢驗(yàn)方法在這種教育評估場景中最為適用?()A.t檢驗(yàn)B.z檢驗(yàn)C.F檢驗(yàn)D.卡方檢驗(yàn)17、在數(shù)據(jù)庫中,若要優(yōu)化查詢語句的執(zhí)行計劃,以下哪個工具或技術(shù)可以提供幫助?()A.索引分析工具B.執(zhí)行計劃查看器C.數(shù)據(jù)庫性能監(jiān)控工具D.以上都是18、在數(shù)據(jù)分析的過程中,需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,例如將不同單位和量級的數(shù)據(jù)轉(zhuǎn)換為統(tǒng)一的尺度。以下哪種情況可能更需要進(jìn)行數(shù)據(jù)標(biāo)準(zhǔn)化?()A.數(shù)據(jù)的分布比較均勻B.數(shù)據(jù)的量級差異較大C.數(shù)據(jù)的類型比較單一D.以上都不是19、在數(shù)據(jù)庫中,索引可以提高數(shù)據(jù)的查詢效率。以下哪種情況下不適合創(chuàng)建索引?()A.表中數(shù)據(jù)量較小B.經(jīng)常作為查詢條件的字段C.唯一性較差的字段D.頻繁更新的字段20、假設(shè)要分析電商平臺上的用戶購買行為隨時間的變化,以下關(guān)于時間序列分析的描述,正確的是:()A.不考慮季節(jié)性因素,直接進(jìn)行時間序列建模B.時間序列分解可以將數(shù)據(jù)分解為趨勢、季節(jié)性和隨機(jī)成分,有助于深入分析C.短期的時間序列數(shù)據(jù)比長期的數(shù)據(jù)更有分析價值D.時間序列分析只能用于預(yù)測未來,不能用于解釋過去的行為模式21、在數(shù)據(jù)分析中,聚類分析用于將數(shù)據(jù)分組。假設(shè)要對客戶進(jìn)行細(xì)分,以下關(guān)于聚類分析的描述,哪一項是不正確的?()A.K-Means聚類算法需要預(yù)先指定聚類的數(shù)量B.層次聚類可以生成層次結(jié)構(gòu)的聚類結(jié)果,便于觀察不同層次的分組情況C.聚類分析的結(jié)果只取決于算法和數(shù)據(jù),不受初始條件和參數(shù)的影響D.可以通過評估聚類的緊密度和分離度來選擇最優(yōu)的聚類方案22、數(shù)據(jù)分析中,經(jīng)常需要對數(shù)據(jù)進(jìn)行可視化展示。以下關(guān)于數(shù)據(jù)可視化的說法,不正確的是:()A.柱狀圖適合用于比較不同類別之間的數(shù)據(jù)差異B.折線圖常用于展示數(shù)據(jù)隨時間的變化趨勢C.餅圖能夠清晰地反映出各部分?jǐn)?shù)據(jù)占總體的比例關(guān)系D.箱線圖主要用于展示數(shù)據(jù)的分布范圍,對于數(shù)據(jù)的集中趨勢展示效果不佳23、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)降維,假設(shè)數(shù)據(jù)集具有高維度,但其中可能存在冗余和無關(guān)的特征。為了減少計算復(fù)雜度并提高分析效率,以下哪種降維方法可能是有效的?()A.主成分分析(PCA),提取主要成分B.線性判別分析(LDA),考慮類別信息C.局部線性嵌入(LLE),保留局部結(jié)構(gòu)D.不進(jìn)行降維,直接處理高維數(shù)據(jù)24、在處理數(shù)據(jù)時,如果需要對數(shù)據(jù)進(jìn)行歸一化,使其值在0到1之間,以下哪個公式可以實(shí)現(xiàn)?()A.x-min(x)/(max(x)-min(x))B.(x-μ)/σC.x/sum(x)D.以上都不是25、在數(shù)據(jù)分析中,模型的可解釋性對于理解模型的決策過程和結(jié)果非常重要。假設(shè)建立了一個用于信用評估的模型,需要向決策者解釋模型是如何做出信用評分的。以下哪種模型在提供可解釋性方面更具優(yōu)勢?()A.決策樹模型B.神經(jīng)網(wǎng)絡(luò)模型C.隨機(jī)森林模型D.以上模型可解釋性相同26、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的自動化是提高效率的重要手段。以下關(guān)于數(shù)據(jù)預(yù)處理自動化的說法中,錯誤的是?()A.數(shù)據(jù)預(yù)處理自動化可以使用腳本和工具來實(shí)現(xiàn),減少手動處理的工作量B.數(shù)據(jù)預(yù)處理自動化可以提高數(shù)據(jù)的一致性和準(zhǔn)確性,減少人為錯誤C.數(shù)據(jù)預(yù)處理自動化需要根據(jù)具體的數(shù)據(jù)和問題進(jìn)行定制化開發(fā),不能通用D.數(shù)據(jù)預(yù)處理自動化可以完全替代手動處理,不需要人工干預(yù)27、數(shù)據(jù)分析中的時間序列分析常用于預(yù)測未來趨勢。假設(shè)要預(yù)測未來一個月的某商品銷售量,該商品的銷售數(shù)據(jù)具有明顯的季節(jié)性和趨勢性。以下哪種時間序列預(yù)測模型在這種情況下更有可能提供準(zhǔn)確的預(yù)測?()A.移動平均模型B.指數(shù)平滑模型C.ARIMA模型D.Prophet模型28、數(shù)據(jù)分析中的實(shí)時數(shù)據(jù)分析要求快速處理和響應(yīng)數(shù)據(jù)。假設(shè)要構(gòu)建一個實(shí)時監(jiān)控系統(tǒng)來跟蹤網(wǎng)站的流量變化,以下關(guān)于實(shí)時數(shù)據(jù)分析技術(shù)選擇的描述,正確的是:()A.選擇傳統(tǒng)的批處理技術(shù),不考慮實(shí)時性要求B.采用復(fù)雜且難以維護(hù)的實(shí)時分析框架,不考慮實(shí)際需求和資源限制C.根據(jù)數(shù)據(jù)量、延遲要求和技術(shù)團(tuán)隊的能力,選擇合適的實(shí)時數(shù)據(jù)分析技術(shù),如Flink、KafkaStreams等,并進(jìn)行性能優(yōu)化和監(jiān)控D.認(rèn)為實(shí)時數(shù)據(jù)分析不需要考慮數(shù)據(jù)的準(zhǔn)確性和完整性29、假設(shè)要分析兩個變量之間的因果關(guān)系,以下關(guān)于因果分析方法的描述,正確的是:()A.相關(guān)性強(qiáng)就意味著存在因果關(guān)系B.格蘭杰因果檢驗(yàn)可以確定變量之間的單向或雙向因果關(guān)系C.觀察兩個變量的變化趨勢就能判斷因果關(guān)系D.不需要考慮其他潛在因素的影響,直接得出因果結(jié)論30、對于一個大型數(shù)據(jù)集,若要快速篩選出符合特定條件的數(shù)據(jù),以下哪種數(shù)據(jù)庫操作更有效?()A.全表掃描B.索引查找C.排序D.分組二、論述題(本大題共5個小題,共25分)1、(本題5分)在線廣告投放的精準(zhǔn)度對于廣告效果和投資回報率有重要影響。請論述如何利用數(shù)據(jù)分析來實(shí)現(xiàn)目標(biāo)受眾的精準(zhǔn)定位、廣告內(nèi)容的個性化定制和投放效果的實(shí)時評估,以及如何應(yīng)對廣告欺詐和數(shù)據(jù)偏差等問題。2、(本題5分)在制造業(yè)的供應(yīng)鏈管理中,數(shù)據(jù)分析可以提高效率和降低成本。以某電子制造企業(yè)為例,分析如何運(yùn)用數(shù)據(jù)分析來優(yōu)化原材料采購、生產(chǎn)計劃安排、物流配送,以及如何應(yīng)對供應(yīng)鏈中斷的風(fēng)險和快速恢復(fù)。3、(本題5分)制造業(yè)的精益生產(chǎn)管理可以借助數(shù)據(jù)分析來實(shí)現(xiàn)持續(xù)改進(jìn)。請?zhí)接懭绾芜\(yùn)用生產(chǎn)過程數(shù)據(jù)來識別浪費(fèi)、優(yōu)化流程和提高生產(chǎn)效率,同時推動員工參與和文化變革。4、(本題5分)隨著遠(yuǎn)程辦公的普及,企業(yè)的員工工作數(shù)據(jù)、協(xié)作數(shù)據(jù)等大量產(chǎn)生。詳細(xì)論述如何運(yùn)用數(shù)據(jù)分析,例如員工績效評估、團(tuán)隊協(xié)作效率分析等,優(yōu)化遠(yuǎn)程辦公管理,同時分析在數(shù)據(jù)安全風(fēng)險、工作與生活平衡監(jiān)測和溝通效果評估方面的挑戰(zhàn)及解決辦法。5、(本題5分)在物流行業(yè)的倉儲自動化管理中,如何利用數(shù)據(jù)分析優(yōu)化倉庫布局、貨物存儲和揀選策略,提高倉儲自動化水平。三、簡答題(本大題共5個小題,共25分)1、(本題5分)解釋數(shù)據(jù)可視化中的數(shù)據(jù)抽象和聚合,說明如何通過抽象和聚合來展示數(shù)據(jù)的總體特征,同時不丟失關(guān)鍵信息。2、(本題5分)闡述數(shù)據(jù)倉庫中的物化視圖的概念和作用,說明在什么情況下使用物化視圖來提高查詢性能,并舉例說明。3、(本題5分)在進(jìn)行數(shù)據(jù)分析時,如何處理數(shù)據(jù)的不平衡分布對模型訓(xùn)練的影響?列舉至少兩種解決方法,并舉例說

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論