2024年天津高考數(shù)學(xué)真題【含答案】_第1頁(yè)
2024年天津高考數(shù)學(xué)真題【含答案】_第2頁(yè)
2024年天津高考數(shù)學(xué)真題【含答案】_第3頁(yè)
2024年天津高考數(shù)學(xué)真題【含答案】_第4頁(yè)
2024年天津高考數(shù)學(xué)真題【含答案】_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

試卷第=page11頁(yè),共=sectionpages33頁(yè)試卷第=page11頁(yè),共=sectionpages33頁(yè)2024年天津高考數(shù)學(xué)真題學(xué)校:___________姓名:___________班級(jí):___________考號(hào):___________一、單選題1.集合,,則(

)A. B. C. D.2.已知,則“”是“”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.下列圖中,線性相關(guān)性系數(shù)最大的是(

)A. B.C. D.4.下列函數(shù)是偶函數(shù)的為(

)A. B. C. D.5.設(shè),則的大小關(guān)系為(

)A. B. C. D.6.已知是兩條直線,是一個(gè)平面,下列命題正確的是(

)A.若,,則 B.若,則C.若,則 D.若,則7.已知函數(shù)的最小正周期為.則在區(qū)間上的最小值是(

)A. B. C.0 D.8.雙曲線的左、右焦點(diǎn)分別為點(diǎn)在雙曲線右支上,直線的斜率為2.若是直角三角形,且面積為8,則雙曲線的方程為(

)A. B. C. D.9.在如圖五面體中,棱互相平行,且兩兩之間距離均為1.若.則該五面體的體積為(

)A. B. C. D.二、填空題10.是虛數(shù)單位,復(fù)數(shù).11.在的展開(kāi)式中,常數(shù)項(xiàng)為.12.已知圓的圓心與拋物線的焦點(diǎn)重合,且兩曲線在第一象限的交點(diǎn)為,則原點(diǎn)到直線的距離為.13.某校組織學(xué)生參加農(nóng)業(yè)實(shí)踐活動(dòng),期間安排了勞動(dòng)技能比賽,比賽共5個(gè)項(xiàng)目,分別為整地做畦、旱田播種、作物移栽、田間灌溉、藤架搭建,規(guī)定每人參加其中3個(gè)項(xiàng)目.假設(shè)每人參加每個(gè)項(xiàng)目的可能性相同,則甲同學(xué)參加“整地做畦”項(xiàng)目的概率為;已知乙同學(xué)參加的3個(gè)項(xiàng)目中有“整地做畦”,則他還參加“田間灌溉”項(xiàng)目的概率為.14.已知正方形的邊長(zhǎng)為1,若,其中為實(shí)數(shù),則;設(shè)是線段上的動(dòng)點(diǎn),為線段的中點(diǎn),則的最小值為.15.設(shè),函數(shù).若恰有一個(gè)零點(diǎn),則的取值范圍為.三、解答題16.在中,角所對(duì)的邊分別為,已知.(1)求的值;(2)求的值;(3)求的值.17.如圖,在四棱柱中,平面,,.分別為的中點(diǎn),(1)求證:平面;(2)求平面與平面夾角余弦值;(3)求點(diǎn)到平面的距離.18.已知橢圓的離心率為.左頂點(diǎn)為,下頂點(diǎn)為是線段的中點(diǎn)(O為原點(diǎn)),的面積為.(1)求橢圓的方程.(2)過(guò)點(diǎn)C的動(dòng)直線與橢圓相交于兩點(diǎn).在軸上是否存在點(diǎn),使得恒成立.若存在,求出點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.19.已知為公比大于0的等比數(shù)列,其前項(xiàng)和為,且.(1)求的通項(xiàng)公式及;(2)設(shè)數(shù)列滿足,其中.(?。┣笞C:當(dāng)時(shí),求證:;(ⅱ)求.20.已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)若對(duì)任意成立,求實(shí)數(shù)的值;(3)若,求證:.答案第=page11頁(yè),共=sectionpages22頁(yè)答案第=page11頁(yè),共=sectionpages22頁(yè)《2024年天津高考數(shù)學(xué)真題》參考答案題號(hào)123456789答案BCABDCDAC1.B【分析】根據(jù)集合交集的概念直接求解即可.【詳解】因?yàn)榧?,,所以,故選:B2.C【分析】說(shuō)明二者與同一個(gè)命題等價(jià),再得到二者等價(jià),即是充分必要條件.【詳解】根據(jù)立方的性質(zhì)和指數(shù)函數(shù)的性質(zhì),和都當(dāng)且僅當(dāng),所以二者互為充要條件.故選:C.3.A【分析】由點(diǎn)的分布特征可直接判斷【詳解】觀察4幅圖可知,A圖散點(diǎn)分布比較集中,且大體接近某一條直線,線性回歸模型擬合效果比較好,呈現(xiàn)明顯的正相關(guān),值相比于其他3圖更接近1.故選:A4.B【分析】根據(jù)偶函數(shù)的判定方法一一判斷即可.【詳解】對(duì)A,設(shè),函數(shù)定義域?yàn)?,但,,則,故A錯(cuò)誤;對(duì)B,設(shè),函數(shù)定義域?yàn)?,且,則為偶函數(shù),故B正確;對(duì)C,設(shè),,,則不是偶函數(shù),故C錯(cuò)誤;對(duì)D,設(shè),函數(shù)定義域?yàn)椋驗(yàn)?,且不恒?,則不是偶函數(shù),故D錯(cuò)誤.故選:B.5.D【分析】利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性分析判斷即可.【詳解】因?yàn)樵谏线f增,且,所以,所以,即,因?yàn)樵谏线f增,且,所以,即,所以,故選:D6.C【分析】根據(jù)線面位置關(guān)系的判定與性質(zhì),逐項(xiàng)判斷即可求解.【詳解】對(duì)于A,若,,則平行或相交,不一定垂直,故A錯(cuò)誤.對(duì)于B,若,則或,故B錯(cuò)誤.對(duì)于C,,過(guò)作平面,使得,因?yàn)?,故,而,故,故,故C正確.對(duì)于D,若,則,故D錯(cuò)誤.故選:C.7.D【分析】結(jié)合周期公式求出,得,再整體求出當(dāng)時(shí),的范圍,結(jié)合正弦三角函數(shù)圖象特征即可求解.【詳解】因?yàn)楹瘮?shù)的最小正周期為,則,所以,即,當(dāng)時(shí),,所以當(dāng),即時(shí),故選:D8.A【分析】可利用三邊斜率問(wèn)題與正弦定理,轉(zhuǎn)化出三邊比例,設(shè),由面積公式求出,由勾股定理得出,結(jié)合第一定義再求出.【詳解】如下圖:由題可知,點(diǎn)必落在第四象限,,設(shè),,由,求得,因?yàn)椋?,求得,即,,由正弦定理可得:,則由得,由得,則,由雙曲線第一定義可得:,,所以雙曲線的方程為.故選:A9.C【分析】采用補(bǔ)形法,補(bǔ)成一個(gè)棱柱,求出其直截面,再利用體積公式即可.【詳解】用一個(gè)完全相同的五面體(頂點(diǎn)與五面體一一對(duì)應(yīng))與該五面體相嵌,使得;;重合,因?yàn)?,且兩兩之間距離為1.,則形成的新組合體為一個(gè)三棱柱,該三棱柱的直截面(與側(cè)棱垂直的截面)為邊長(zhǎng)為1的等邊三角形,側(cè)棱長(zhǎng)為,.故選:C.10.【分析】借助復(fù)數(shù)的乘法運(yùn)算法則計(jì)算即可得.【詳解】.故答案為:.11.20【分析】根據(jù)題意結(jié)合二項(xiàng)展開(kāi)式的通項(xiàng)分析求解即可.【詳解】因?yàn)榈恼归_(kāi)式的通項(xiàng)為,令,可得,所以常數(shù)項(xiàng)為.故答案為:20.12./【分析】先求出圓心坐標(biāo),從而可求焦準(zhǔn)距,再聯(lián)立圓和拋物線方程,求及的方程,從而可求原點(diǎn)到直線的距離.【詳解】圓的圓心為,故即,由可得,故或(舍),故,故直線即,故原點(diǎn)到直線的距離為,故答案為:13.【分析】結(jié)合列舉法或組合公式和概率公式可求解第一空;采用列舉法或者條件概率公式可求第二空.【詳解】解法一:列舉法給這5個(gè)項(xiàng)目分別編號(hào)為,從五個(gè)活動(dòng)中選三個(gè)的情況有:,共10種情況,其中甲選到有6種可能性:,則甲參加“整地做畦”的概率為:;乙選活動(dòng)有6種可能性:,其中再選擇有3種可能性:,故乙參加的3個(gè)項(xiàng)目中有“整地做畦”,則他還參加“田間灌溉”項(xiàng)目的概率為.解法二:設(shè)甲、乙選到為事件,乙選到為事件,則甲選到的概率為;乙選了活動(dòng),他再選擇活動(dòng)的概率為故答案為:;14.【分析】解法一:以為基底向量,根據(jù)向量的線性運(yùn)算求,即可得,設(shè),求,結(jié)合數(shù)量積的運(yùn)算律求的最小值;解法二:建系標(biāo)點(diǎn),根據(jù)向量的坐標(biāo)運(yùn)算求,即可得,設(shè),求,結(jié)合數(shù)量積的坐標(biāo)運(yùn)算求的最小值.【詳解】解法一:因?yàn)椋矗瑒t,可得,所以;由題意可知:,因?yàn)闉榫€段上的動(dòng)點(diǎn),設(shè),則,又因?yàn)闉橹悬c(diǎn),則,可得,又因?yàn)椋芍寒?dāng)時(shí),取到最小值;解法二:以B為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,如圖所示,則,可得,因?yàn)?,則,所以;因?yàn)辄c(diǎn)在線段上,設(shè),且為中點(diǎn),則,可得,則,且,所以當(dāng)時(shí),取到最小值為;故答案為:;.15.【分析】結(jié)合函數(shù)零點(diǎn)與兩函數(shù)的交點(diǎn)的關(guān)系,構(gòu)造函數(shù)與,則兩函數(shù)圖象有唯一交點(diǎn),分、與進(jìn)行討論,當(dāng)時(shí),計(jì)算函數(shù)定義域可得或,計(jì)算可得時(shí),兩函數(shù)在軸左側(cè)有一交點(diǎn),則只需找到當(dāng)時(shí),在軸右側(cè)無(wú)交點(diǎn)的情況即可得;當(dāng)時(shí),按同一方式討論即可得.【詳解】令,即,由題可得,當(dāng)時(shí),,有,則,不符合要求,舍去;當(dāng)時(shí),則,即函數(shù)與函數(shù)有唯一交點(diǎn),由,可得或,當(dāng)時(shí),則,則,即,整理得,當(dāng)時(shí),即,即,當(dāng),或(正值舍去),當(dāng)時(shí),或,有兩解,舍去,即當(dāng)時(shí),在時(shí)有唯一解,則當(dāng)時(shí),在時(shí)需無(wú)解,當(dāng),且時(shí),由函數(shù)關(guān)于對(duì)稱,令,可得或,且函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,令,即,故時(shí),圖象為雙曲線右支的軸上方部分向右平移所得,由的漸近線方程為,即部分的漸近線方程為,其斜率為,又,即在時(shí)的斜率,令,可得或(舍去),且函數(shù)在上單調(diào)遞增,故有,解得,故符合要求;當(dāng)時(shí),則,即函數(shù)與函數(shù)有唯一交點(diǎn),由,可得或,當(dāng)時(shí),則,則,即,整理得,當(dāng)時(shí),即,即,當(dāng),(負(fù)值舍去)或,當(dāng)時(shí),或,有兩解,舍去,即當(dāng)時(shí),在時(shí)有唯一解,則當(dāng)時(shí),在時(shí)需無(wú)解,當(dāng),且時(shí),由函數(shù)關(guān)于對(duì)稱,令,可得或,且函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,同理可得:時(shí),圖象為雙曲線左支的軸上方部分向左平移所得,部分的漸近線方程為,其斜率為,又,即在時(shí)的斜率,令,可得或(舍去),且函數(shù)在上單調(diào)遞減,故有,解得,故符合要求;綜上所述,.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題關(guān)鍵點(diǎn)在于將函數(shù)的零點(diǎn)問(wèn)題轉(zhuǎn)化為函數(shù)與函數(shù)的交點(diǎn)問(wèn)題,從而可將其分成兩個(gè)函數(shù)研究.16.(1)(2)(3)【分析】(1),利用余弦定理即可得到方程,解出即可;(2)法一:求出,再利用正弦定理即可;法二:利用余弦定理求出,則得到;(3)法一:根據(jù)大邊對(duì)大角確定為銳角,則得到,再利用二倍角公式和兩角差的余弦公式即可;法二:直接利用二倍角公式和兩角差的余弦公式即可.【詳解】(1)設(shè),,則根據(jù)余弦定理得,即,解得(負(fù)舍);則.(2)法一:因?yàn)闉槿切蝺?nèi)角,所以,再根據(jù)正弦定理得,即,解得,法二:由余弦定理得,因?yàn)?,則(3)法一:因?yàn)?,且,所以,由?)法一知,因?yàn)?,則,所以,則,.法二:,則,因?yàn)闉槿切蝺?nèi)角,所以,所以17.(1)證明見(jiàn)解析(2)(3)【分析】(1)取中點(diǎn),連接,,借助中位線的性質(zhì)與平行四邊形性質(zhì)定理可得,結(jié)合線面平行判定定理即可得證;(2)建立適當(dāng)空間直角坐標(biāo)系,計(jì)算兩平面的空間向量,再利用空間向量夾角公式計(jì)算即可得解;(3)借助空間中點(diǎn)到平面的距離公式計(jì)算即可得解.【詳解】(1)取中點(diǎn),連接,,由是的中點(diǎn),故,且,由是的中點(diǎn),故,且,則有、,故四邊形是平行四邊形,故,又平面,平面,故平面;(2)以為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,有、、、、、,則有、、,設(shè)平面與平面的法向量分別為、,則有,,分別取,則有、、,,即、,則,故平面與平面的夾角余弦值為;(3)由,平面的法向量為,則有,即點(diǎn)到平面的距離為.18.(1)(2)存在,使得恒成立.【分析】(1)根據(jù)橢圓的離心率和三角形的面積可求基本量,從而可得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)該直線方程為:,,聯(lián)立直線方程和橢圓方程并消元,結(jié)合韋達(dá)定理和向量數(shù)量積的坐標(biāo)運(yùn)算可用表示,再根據(jù)可求的范圍.【詳解】(1)因?yàn)闄E圓的離心率為,故,,其中為半焦距,所以,故,故,所以,,故橢圓方程為:.(2)若過(guò)點(diǎn)的動(dòng)直線的斜率存在,則可設(shè)該直線方程為:,設(shè),由可得,故且而,故,因?yàn)楹愠闪?,故,解?若過(guò)點(diǎn)的動(dòng)直線的斜率不存在,則或,此時(shí)需,兩者結(jié)合可得.綜上,存在,使得恒成立.【點(diǎn)睛】思路點(diǎn)睛:圓錐曲線中的范圍問(wèn)題,往往需要用合適的參數(shù)表示目標(biāo)代數(shù)式,表示過(guò)程中需要借助韋達(dá)定理,此時(shí)注意直線方程的合理假設(shè).19.(1)(2)①證明見(jiàn)詳解;②【分析】(1)設(shè)等比數(shù)列的公比為,根據(jù)題意結(jié)合等比數(shù)列通項(xiàng)公式求,再結(jié)合等比數(shù)列求和公式分析求解;(2)①根據(jù)題意分析可知,,利用作差法分析證明;②根據(jù)題意結(jié)合等差數(shù)列求和公式可得,再結(jié)合裂項(xiàng)相消法分析求解.【詳解】(1)設(shè)等比數(shù)列的公比為,因?yàn)?,即,可得,整理得,解得或(舍去),所?(2)(i)由(1)可知,且,當(dāng)時(shí),則,即可知,,可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以;(ii)由(1)可知:,若,則;若,則,當(dāng)時(shí),,可知為等差數(shù)列,可得,所以,且,符合上式,綜上所述:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:1.分析可知當(dāng)時(shí),,可知為等差數(shù)列;2.根據(jù)等差數(shù)列求和分析可得.20.(1)(2)2(3)證明過(guò)程見(jiàn)解析【分析】(1)直接使用導(dǎo)數(shù)的幾何意義;(2)先由題設(shè)條件得到,再證明時(shí)條件滿足;(3)先確定的單調(diào)性,再對(duì)分類討論.【詳解】(1)由于,故.所以,,所以所求的切線經(jīng)過(guò),且斜率為,故其方程為.(2)設(shè),則,從而當(dāng)時(shí),當(dāng)時(shí).所以在上遞減,在上遞增,這就說(shuō)明,即,且等號(hào)成立當(dāng)且僅當(dāng).設(shè),則.當(dāng)時(shí),的取值范圍是,所以命題等價(jià)于對(duì)任意,都有.一方面,若對(duì)任意,都有,則對(duì)有,取,得,故.再取,得,所以.另一方面,若,則對(duì)任意都有,滿足條件.綜合以上兩個(gè)方面,知的值是2.(3)先證明一個(gè)結(jié)論:對(duì),有.證明:前面已經(jīng)證明不等式,故,且,所以,即.由,可知當(dāng)時(shí),當(dāng)時(shí).所以在上遞減,在上遞增.不妨設(shè),下面分三種

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論