




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省重點中學2025年高三5月熱身考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的內(nèi)角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.2.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.3.用電腦每次可以從區(qū)間內(nèi)自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.4.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據(jù)他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁5.已知集合,,,則()A. B. C. D.6.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.7.已知函數(shù)滿足=1,則等于()A.- B. C.- D.8.函數(shù)的部分圖像如圖所示,若,點的坐標為,若將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,則的最小值為()A. B. C. D.9.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結(jié)對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現(xiàn)選出3位老教師負責指導5位新入聘教師,則不同的師徒結(jié)對方式共有()種.A.360 B.240 C.150 D.12010.已知向量,,若,則與夾角的余弦值為()A. B. C. D.11.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.12.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實數(shù)滿足約束條件,則的最大值為______.14.若展開式的二項式系數(shù)之和為64,則展開式各項系數(shù)和為__________.15.在平面直角坐標系中,曲線在點處的切線與x軸相交于點A,其中e為自然對數(shù)的底數(shù).若點,的面積為3,則的值是______.16.如圖,在三棱錐中,平面,,已知,,則當最大時,三棱錐的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)的三個內(nèi)角、、所對邊分別為、、,若且,求面積的取值范圍.18.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.19.(12分)設(shè)的內(nèi)角、、的對邊長分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.20.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點.(1)求證:;(2)求二面角的大小.21.(12分)在中,內(nèi)角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.22.(10分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構(gòu)成的四邊形的面積為.(1)求橢圓C的標準方程:(2)設(shè)A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.2.D【解析】
說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).3.C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結(jié)合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.4.A【解析】
可采用假設(shè)法進行討論推理,即可得到結(jié)論.【詳解】由題意,假設(shè)甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,丁:我沒有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設(shè)甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應(yīng)用,其中解答中合理采用假設(shè)法進行討論推理是解答的關(guān)鍵,著重考查了推理與分析判斷能力,屬于基礎(chǔ)題.5.A【解析】
求得集合中函數(shù)的值域,由此求得,進而求得.【詳解】由,得,所以,所以.故選:A【點睛】本小題主要考查函數(shù)值域的求法,考查集合補集、交集的概念和運算,屬于基礎(chǔ)題.6.D【解析】
設(shè)圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.7.C【解析】
設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進而可得.【詳解】解:設(shè)的最小正周期為,因為,所以,所以,所以,又,所以當時,,,因為,整理得,因為,,,則所以.故選:C.【點睛】本題考查三角形函數(shù)的周期性和對稱性,考查學生分析能力和計算能力,是一道難度較大的題目.8.B【解析】
根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關(guān)于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點與最低點的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點睛】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關(guān)鍵,要求熟練掌握函數(shù)圖象之間的變換關(guān)系,屬于簡單題目.9.C【解析】
可分成兩類,一類是3個新教師與一個老教師結(jié)對,其他一新一老結(jié)對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結(jié)對,有種結(jié)對結(jié)對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結(jié)對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對這個事情,是先分類還是先分步,確定方法后再計數(shù).本題中有一個平均分組問題.計數(shù)時容易出錯.兩組中每組中人數(shù)都是2,因此方法數(shù)為.10.B【解析】
直接利用向量的坐標運算得到向量的坐標,利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數(shù)量積的應(yīng)用,考查運算求解能力以及化歸與轉(zhuǎn)化思想.11.D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設(shè)正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設(shè)正方體的棱長為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.12.B【解析】
利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
試題分析:作出不等式組所表示的平面區(qū)域如圖,當直線過點時,最大,且考點:線性規(guī)劃.14.1【解析】
由題意得展開式的二項式系數(shù)之和求出的值,然后再計算展開式各項系數(shù)的和.【詳解】由題意展開式的二項式系數(shù)之和為,即,故,令,則展開式各項系數(shù)的和為.故答案為:【點睛】本題考查了二項展開式的二項式系數(shù)和項的系數(shù)和問題,需要運用定義加以區(qū)分,并能夠運用公式和賦值法求解結(jié)果,需要掌握解題方法.15.【解析】
對求導,再根據(jù)點的坐標可得切線方程,令,可得點橫坐標,由的面積為3,求解即得.【詳解】由題,,切線斜率,則切線方程為,令,解得,又的面積為3,,解得.故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的切線,難度不大.16.4【解析】設(shè),則,,,,當且僅當,即時,等號成立.,故答案為4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,利用余弦定理結(jié)合基本不等式求出的取值范圍,再結(jié)合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當且僅當時取等號,所以,的面積.【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解,同時也考查了三角形面積取值范圍的計算,涉及余弦定理和基本不等式的應(yīng)用,考查計算能力,屬于中等題.18.(1);(2).【解析】
若補充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補充兩個條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標原點,建立空間坐標系,求出坐標,由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設(shè)平面為平面.∵,∴平面,而平面平面,∴,又為中點.設(shè),則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標系,設(shè),則,由(1)得為平面的一個法向量,因為,所以直線與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點,即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點睛】本題考查空間點、線、面位置關(guān)系,以及體積、直線與平面所成的角,考查計算求解能力,屬于中檔題.19.(1);(2).【解析】
(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當且僅當時取最大值.故的最大值為.【點睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學生的轉(zhuǎn)化能力和數(shù)學運算能力,屬于基礎(chǔ)題20.(1)證明見解析;(2)60°.【解析】試題分析:(1)連結(jié)PD,由題意可得,則AB⊥平面PDE,;(2)法一:結(jié)合幾何關(guān)系做出二面角的平面角,計算可得其正切值為,故二面角的大小為;法二:以D為原點建立空間直角坐標系,計算可得平面PBE的法向量.平面PAB的法向量為.據(jù)此計算可得二面角的大小為.試題解析:(1)連結(jié)PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級語文上冊 20 記 銘 說 志四篇《寒花葬志》教學設(shè)計1 長春版
- 《平行四邊形的面積》教學設(shè)計-2024-2025學年五年級上冊數(shù)學北師大版
- 2024年七年級語文上冊 第六單元 少年詩情 第24課《寫給云》教學設(shè)計 滬教版五四制
- Unit 5 Here and Now(Section A1a-1d)教學設(shè)計 2024-2025學年人教版(2024)七年級英語下冊
- 9《古代科技 耀我中華》第二課時(教學設(shè)計)-部編版道德與法治五年級上冊
- 2 說話要算數(shù) 教學設(shè)計-2023-2024學年道德與法治四年級下冊統(tǒng)編版
- 2024秋四年級英語上冊 Unit 3 My friends Part B 第1課時教學設(shè)計 人教PEP
- 6 有多少浪費本可避免2023-2024學年四年級下冊道德與法治同步教學設(shè)計(統(tǒng)編版)
- 2023-2024學年浙江攝影版(三起)(2020)小學信息技術(shù)五年級下冊算法初步(教學設(shè)計)
- 一年級道德與法治上冊 第二單元 2《我們一起做》教學設(shè)計 浙教版
- 畢業(yè)設(shè)計(論文)-木料切割機設(shè)計
- 旅行社導游合同范本
- 倒立擺完整版本
- HG-T20678-2023《化工設(shè)備襯里鋼殼設(shè)計標準》
- 工程項目部安全生產(chǎn)治本攻堅三年行動實施方案
- 工業(yè)園區(qū)智慧能源管理平臺建設(shè)方案 產(chǎn)業(yè)園區(qū)智慧能源管理平臺建設(shè)方案
- 安徽省蕪湖市無為市部分學校2023-2024學年八年級下學期期中數(shù)學試題
- 《客艙安全與應(yīng)急處置》-課件:滅火設(shè)備:防護式呼吸裝置
- 《幼兒園混齡民間游戲的研究》課題研究方案
- 《脊柱腫瘤》課件
- 禮儀部計劃書
評論
0/150
提交評論