初中幾何輔助線大全_第1頁(yè)
初中幾何輔助線大全_第2頁(yè)
初中幾何輔助線大全_第3頁(yè)
初中幾何輔助線大全_第4頁(yè)
初中幾何輔助線大全_第5頁(yè)
已閱讀5頁(yè),還剩84頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、初中數(shù)學(xué)輔助線的添加淺談人們從來(lái)就是用自己的聰明才智創(chuàng)造條件解決問(wèn)題的,當(dāng)問(wèn)題的條件不夠時(shí),添加輔助 線構(gòu)成新圖形,形成新關(guān)系,使分散的條件集中,建立 已知與未知的橋梁,把問(wèn)題轉(zhuǎn)化為自己 能解決的問(wèn)題,這是解決問(wèn)題常用的策略。一添輔助線有二種情況:1按定義添輔助線:如證明二直線垂直可延長(zhǎng)使它們,相交后證交角為90 ° ;證線段倍半關(guān)系可倍線段取中 點(diǎn)或半線段加倍;證角的倍半關(guān)系也可類(lèi)似添輔助線。2按基本圖形添輔助線:每個(gè)幾何定理都有與它相對(duì)應(yīng)的幾何圖形,我們把它叫做基本 圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時(shí)補(bǔ)完整基本圖形,因此“添 線”應(yīng)該叫做“補(bǔ)圖”!這樣可防止

2、亂添線,添輔助線也有規(guī)律可循。舉例如下:(1 )平行線是個(gè)基本圖形:當(dāng)幾何中出現(xiàn)平行線時(shí)添輔助線的關(guān)鍵是添與二條平行線都 相交的等第三條直線(2)等腰三角形是個(gè)簡(jiǎn)單的基本圖形:當(dāng)幾何問(wèn)題中出現(xiàn)一點(diǎn)發(fā)出的二條相等線段時(shí)往 往要補(bǔ)完整等腰三角形。出現(xiàn)角平分線與平行線組合時(shí)可延長(zhǎng)平行線與角的二邊相交得等腰三 角形。(3)等腰三角形中的重要線段是個(gè)重要的基本圖形:出現(xiàn)等腰三角形底邊上的中點(diǎn)添底邊上的中線;出現(xiàn)角平分線與垂線組合時(shí)可延長(zhǎng)垂線與 角的二邊相交得等腰三角形中的重要線段的基本圖形(4)直角三角形斜邊上中線基本圖形出現(xiàn)直角三角形斜邊上的中點(diǎn)往往添斜邊上的中線。出現(xiàn)線段倍半關(guān)系且倍線段是直角 三角

3、形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。(5)三角形中位線基本圖形幾何問(wèn)題中出現(xiàn)多個(gè)中點(diǎn)時(shí)往往添加三角形中位線基本圖形進(jìn)行證明當(dāng)有中點(diǎn)沒(méi)有中位 線時(shí)則添中位線,當(dāng)有中位線三角形不完整時(shí)則需補(bǔ)完 整三角形;當(dāng)出現(xiàn)線段倍半關(guān)系且與倍 線段有公共端點(diǎn)的線段帶一個(gè)中點(diǎn)則可過(guò)這中點(diǎn)添倍線段的平行線得三角形中位線基本圖形; 當(dāng)出現(xiàn)線段倍半關(guān)系且與半線段的端點(diǎn)是某線段的中點(diǎn),則可過(guò)帶中點(diǎn)線段的端點(diǎn)添半線段的 平行線得三角形中位線基本圖形。(6)全等三角形:全等三角形有軸對(duì)稱(chēng)形,中心對(duì)稱(chēng)形,旋轉(zhuǎn)形與平移形等;如果出現(xiàn)兩條相等線段或兩 個(gè)檔相等角關(guān)于某一直線成軸對(duì)稱(chēng)就可以添加軸對(duì)稱(chēng)形

4、全等三角形:或添對(duì)稱(chēng)軸,或?qū)⑷切?沿對(duì)稱(chēng)軸翻轉(zhuǎn)。當(dāng)幾何問(wèn)題中出現(xiàn)一組或兩組相等線段位于一組對(duì)頂角兩邊且成一直線時(shí)可添 加中心對(duì)稱(chēng)形全等三角形加以證明,添加方法是將四個(gè)端點(diǎn)兩兩連結(jié)或過(guò)二端點(diǎn)添平行線(7)相似三角形:相似三角形有平行線型(帶平行線的相似三角形),相交線型,旋轉(zhuǎn)型;當(dāng)出現(xiàn)相比線段重疊在一直線上時(shí)(中點(diǎn)可看成比為得平行線型相1 )可添加平行線 似三角形。若平行線過(guò)端點(diǎn)添則可以分點(diǎn)或另一端點(diǎn)的線段為平行方向,這類(lèi)題目中往往有多種淺線方法。(8)特殊角直角三角形當(dāng)出現(xiàn)30,45,60,135 7 50度特殊角時(shí)可添加特殊角直角三角形,利用45角直角三角形三邊比為1 : 1 :22 ;

5、30度角直角三角形三邊比為1 :2: 23進(jìn)行證明(9)半圓上的圓周角出現(xiàn)直徑與半圓上的點(diǎn),添90度的圓周角;出現(xiàn)90度的圓周角則添它所對(duì)弦直 徑;平面幾何中總共只有二十多個(gè)基本圖形就像房子不外有一砧,瓦,水泥,石灰,木等組成一 樣。二基本圖形的輔助線的畫(huà)法1 .三角形問(wèn)題添加輔助線方法方法1:有關(guān)三角形中線的題目,常將中線加倍。含有中點(diǎn)的題目,常常利用三角形的中 位線,通過(guò)這種方法,把要證的結(jié)論恰當(dāng)?shù)霓D(zhuǎn)移,很容易地解決了問(wèn)題。方法2:含有平分線的題目,常以角平分線為對(duì)稱(chēng)軸,利用角平分線的性質(zhì)和題中的條 件,構(gòu)造出全等三角形,從而利用全等三角形的知識(shí)解決問(wèn)題。方法3:結(jié)論是兩線段相等的題目常畫(huà)

6、輔助線構(gòu)成全等三角形,或利用關(guān)于平分線段的一 些定理。方法4:結(jié)論是一條線段與另一條線段之和等于第三條線段這類(lèi)題目,常采用截長(zhǎng)法或補(bǔ) 短法,所謂截長(zhǎng)法就是把第三條線段分成兩部分,證其中的一部分等于第一條線段,而另一 部分等于第二條線段。2 .平行四邊形中常用輔助線的添法平行四邊形(包括矩形、正方形、菱形)的兩組對(duì)邊、對(duì)角和對(duì)角線都具有某些相同性 質(zhì),所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構(gòu)成三角形的全 等、相似,把平行四邊形問(wèn)題轉(zhuǎn)化成常見(jiàn)的三角形、正方形等問(wèn)題處理,其常用方法有下列幾 種,舉例簡(jiǎn)解如下:(1 )連對(duì)角線或平移對(duì)角線:(2)過(guò)頂點(diǎn)作對(duì)邊的垂線構(gòu)造直角三角

7、形(3)連接對(duì)角線交點(diǎn)與一邊中點(diǎn),或過(guò)對(duì)角線交點(diǎn)作一邊的平行線,構(gòu)造 線段平行或中位線(4)連接頂點(diǎn)與對(duì)邊上一點(diǎn)的線段或延長(zhǎng)這條線段,構(gòu)造三角形相似或等 積三角形。(5 )過(guò)頂點(diǎn)作對(duì)角線的垂線,構(gòu)成線段平行或三角形全等.3 .梯形中常用輔助線的添法梯形是一種特殊的四邊形。它是平行四邊形、三角形知識(shí)的綜合,通過(guò)添加適當(dāng)?shù)妮o助線將梯形問(wèn)題化歸為平行四邊形問(wèn)題或三角形問(wèn)題來(lái)解決。輔助線的添加成為問(wèn)題解決的橋 梁,梯形中常用到的輔助線有:(1)在梯形內(nèi)部平移一腰。(2 )梯形外平移一腰(3)梯形內(nèi)平移兩腰(4)延長(zhǎng)兩腰(5)過(guò)梯形上底的兩端點(diǎn)向下底作高(6)平移對(duì)角線(7)連接梯形一頂點(diǎn)及一腰的中點(diǎn)。

8、(8)過(guò)一腰的中點(diǎn)作另一腰的平行線。(9)作中位線當(dāng)然在梯形的有關(guān)證明和計(jì)算中,添加的輔助線并不一定是固定不變的、單一的。通過(guò) 輔助線這座橋梁,將梯形問(wèn)題化歸為平行四邊形問(wèn)題或三角形問(wèn)題來(lái)解決,這是解決問(wèn)題的關(guān) 鍵。4 .圓中常用輔助線的添法在平面幾何中,解決與圓有關(guān)的問(wèn)題時(shí),常常需要添加適當(dāng)?shù)妮o助線,架起題設(shè)和結(jié) 論間的橋梁,從而使問(wèn)題化難為易,順其自然地得到解決,因此,靈活掌握作輔助線的一般規(guī) 律和常見(jiàn)方法,對(duì)提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力是 大有幫助的。(1)見(jiàn)弦作弦心距有關(guān)弦的問(wèn)題,常作其弦心距(有時(shí)還須作出相應(yīng)的半徑),通過(guò)垂 徑平分定理,來(lái)溝通題設(shè)與結(jié)論間的聯(lián)系。(2)見(jiàn)直徑作圓

9、周角在題目中若已知圓的直徑,一般是作直徑所對(duì)的圓周角,利用“直 徑所對(duì)的圓周角是直角”這一特征來(lái)證明問(wèn)題。(3)見(jiàn)切線作半徑命題的條件中含有圓的切線,往往是連結(jié)過(guò)切點(diǎn)的半徑,利用“切線 與半徑垂直”這一性質(zhì)來(lái)證明問(wèn)題。(4)兩圓相切作公切線 對(duì)兩圓相切的問(wèn)題,一般是經(jīng)過(guò)切點(diǎn)作兩圓的公切線或作它們 的連心線,通過(guò)公切線可以找到與圓有關(guān)的角的關(guān)系。(5)兩圓相交作公共弦對(duì)兩圓相交的問(wèn)題,通常是作出公共弦,通過(guò)公共弦既可把兩圓的弦聯(lián)系起來(lái),又可以把兩 圓中的圓周角或圓心角聯(lián)系起來(lái)。作輔助線的方法一:中點(diǎn)、中位線,延線,平行線。如遇條件中有中點(diǎn),中線、中位線等,那么過(guò)中點(diǎn),延長(zhǎng)中線或中位線作輔助線,使

10、延長(zhǎng)的某 一段等于中線或中位線;另一種輔助線是過(guò)中點(diǎn)作已知邊或線段的平行線,以達(dá)到應(yīng)用某個(gè)定理或 造成全等的目的。二:垂線、分角線,翻轉(zhuǎn)全等連。如遇條件中,有垂線或角的平分線,可以把圖形按軸對(duì)稱(chēng)的方法,并借助其他條件,而旋轉(zhuǎn) 180度,得到全等形,這時(shí)輔助線的做法就會(huì)應(yīng)運(yùn)而生。其對(duì)稱(chēng)軸往往是垂線或角的平分線。三:邊邊若相等,旋轉(zhuǎn)做實(shí)驗(yàn)。如遇條件中有多邊形的兩邊相等或兩角相等,有時(shí)邊角互相配合,然后把圖形旋轉(zhuǎn)一定的角 度,就可以得到全等形,這時(shí)輔助線的做法仍會(huì)應(yīng)運(yùn)而生。其對(duì)稱(chēng)中心,因題而異,有時(shí)沒(méi)有中心。 故可分“有心”和“無(wú)心”旋轉(zhuǎn)兩種。四:造角、平、相似,和、差、積、商見(jiàn)。如遇條件中有多邊形

11、的兩邊相等或兩角相等,欲證線段或角的和差積商,往往與相似形有 關(guān)。在制造兩個(gè)三角形相似時(shí),一般地,有兩種方法:第一,造一個(gè)輔助角等于已知角;第二,是把 三角形中的某一線段進(jìn)行平移。故作歌訣:“造角、平、相似,和差積商見(jiàn)?!蓖辛忻锥ɡ砗兔啡~勞定理的證明輔助線分別是造角和平移的代表)五:兩圓若相交,連心公共弦 如果條件中出現(xiàn)兩圓相交,那么輔助線往往是連心線或公共 弦。六:兩圓相切、離,連心,公切線。如條件中出現(xiàn)兩圓相切(外切,內(nèi)切),或相離(內(nèi)含、外離),那么,輔助線往往是連心線或內(nèi)外公切線。七:切線連直徑,直角與半圓。如果條件中出現(xiàn)圓的切線,那么輔助線是過(guò)切點(diǎn)的直徑或半徑使出現(xiàn)直角;相反,條件中

12、是圓的直徑,半徑,那么輔助線是過(guò)直徑(或半徑)端點(diǎn)的切線。即切線與直徑互為輔助線。如果條件中有直角三角形,那么作輔助線往往是斜邊為直徑作輔助圓,或半圓;相反,條件中有半圓,那么在直徑上找圓周角一一直角為輔助線。即直角與半圓互為輔助線。八:弧、弦、弦心距;平行、等距、弦。如遇弧,則弧上的弦是輔助線;如遇弦,則弦心距為輔助線。如遇平行線,則平行線間的距離相等,距離為輔助線;反之,亦成立。如遇平行弦,則平行線間的距離相等,所夾的弦亦相等,距離和所夾的弦都可視為輔助線,反 之,亦成立。有時(shí),圓周角,弦切角,圓心角,圓內(nèi)角和圓外角也存在因果關(guān)系互相聯(lián)想作輔助線。九:面積找底高,多邊變?nèi)叀?往往作底或如

13、遇求面積,(在條件和結(jié)論中出現(xiàn)線段的平方、乘積,仍可視為求面積)高為輔助線,而兩三角形的等底或等高是思考的關(guān)鍵。如遇多邊形,想法割補(bǔ)成三角形;反之,亦成立。另外,我國(guó)明清數(shù)學(xué)家用面積證明勾股定理,其輔助線的做法,即“割補(bǔ)”有二百多種,大多數(shù)為“面積找底高,多邊變?nèi)叀?。三角形中作輔助線的常用方法舉例一、在利用三角形三邊關(guān)系證明線段不等關(guān)系時(shí),若直接證不出來(lái),可連接兩點(diǎn) 或延長(zhǎng)某邊 構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個(gè)或幾個(gè)三角形中,再運(yùn)用三角形三邊的不等關(guān)系證 明,如:例1已知如圖1-1 : D EABC內(nèi)兩點(diǎn),求證:AB + AC> BD+ DE+ CE.證明:(法一)將DE兩邊延長(zhǎng)分

14、別交AB AC于MN在 A AMN 中,AM- AN > MD+ DE+ NE; (1)在Za BDM 中,MBF MD> BD(2)CEN 中,CW NE> CE;(3)由(1)+ ( 2) +(3)得:AM + AN+ MB+ MDA CN+ NE> MDA DE+ NE+ BD+ CE AB+ AC> BD+ DE+(法二:)如圖12,延長(zhǎng)BD交AC于F,延長(zhǎng)CE交BF于G在A ABF和A GF6D八GDE中有:AB+ AF> BD+ DGFGF (三角形兩邊之和大于第三邊)C )GF+ FC> GE+CE(同上)(2)DG + GE> D

15、E(同上)(3)由+( 2) + ( 3)得:AB + AF+ GF+ FC+ DGF GE> BD+ D(+ GF+ GH CE+ DE - AB+ AC> BD+ DE+ EG二、在利用三角形的外角大于任何和它不相鄰的內(nèi)角時(shí)如直接證不出來(lái)時(shí), 可連 接兩點(diǎn)或延長(zhǎng)某邊,構(gòu)造三角形,使求證的大角在某個(gè)三角形的外角的位置上,小角處于這個(gè) 三角形的內(nèi)角位置上,再利用外角定理:例如:如圖2-1 :已知D為4 ABC內(nèi)的任一點(diǎn),求證:/ BDOZ BAC分析:因?yàn)?BDC與/BAC不在同一個(gè)三角形中,沒(méi)有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使/BDC處于在外角的位置,/Lae

16、9; IYiEfrJ r'» - rsvHnr-t'r,i-cJ*Ur一BAC處于在內(nèi)角的位置;證法一:延長(zhǎng)BD交AC于點(diǎn)E,這時(shí)/ BDC八AEDCF外角, / BDC>/ DEC 同理/ DEO/ BAC / BDC>/ BAC證法二:連接AD,并延長(zhǎng)交BC于F / BDF>A ABD 的外角 / BDF>/ BAD 同理,/ CDF>/ CAD / BDH/ CDF>/ BADb/ CAD即:/ BDC>/ BAC注意:利用三角形外角定理證明不等關(guān)系時(shí),通常將大角放在某三角形的外角位置上,小角放在這個(gè) 三角形的內(nèi)角位置上

17、,再利用不等式性質(zhì)證明。三、有角平分線時(shí),通常在角的兩邊截取相等的線段,構(gòu)造全等三角形,如:例如:如圖3-1 :已知AD%A ABC的中線,且/ 1=/ 2, / 3=/ 4,求證: BE+ CF> EF。分析:要證BE+ CFEF,可利用三角形三邊關(guān)系定理證明,須把BE,CF,EF移到同一個(gè)三角形中,而由已知/ 1=/2,/3二/4 ,可在角的兩邊截取相等的線段,利用三角形全等對(duì)應(yīng)邊相等,把EN,F(xiàn)N,EF移到同一個(gè)三角形中。證明:在DA上截取DN= DB,連接NE, NF,貝U DN二DCDN DB (輔助線的作法)T1 2(已知)ED ED (公共邊) DBEAA DNE (SAS

18、BE=NE (全等三角形對(duì)應(yīng)邊相等)同理可得:CF二NF在AEFN中EN+ FN> EF (三角形兩邊之和大于第三邊) BE+ CF> EF。注意:當(dāng)證題有角平分線時(shí),??煽紤]在角的兩邊截取相等的線段,構(gòu)造全等三角形,然后用全等三角形的性質(zhì)得到對(duì)應(yīng)元素相等。/ 1 + Z2+Z3+Z4 = 180° (平角的定義)EF=MF (全等三角形對(duì)應(yīng)邊相等)- -在ACM沖,CF+ CM>MF (三角形兩邊之和大于第三邊)-BE+ CF> EF注:上題也可加倍FD,證法同上。注意:當(dāng)涉及到有以線段中點(diǎn)為端點(diǎn)的線段時(shí),可通過(guò)延長(zhǎng)加倍此線段,構(gòu)造全等三角形, e .4 m

19、. ,: .-4 irir ii- ./©,一7一-* BE=CA (全等三角形對(duì)應(yīng)邊相等)-在 ABE中有:AB+ BE> AE (三角形兩邊之和大于第三邊) AB+ AC> 2AD(常延長(zhǎng)中線加倍,構(gòu)造全等三角形)AN 等于 AC,得 AB AC = BN ,再連接 PN,貝 U PC二 PN,又在 PNB 中,PB PN V BN ,即:AB ACPB- PC。證明:(截長(zhǎng)法)在AB上截取AN= AC連接PN ,在A APWD八APC中AN AC (輔助線的作法)12 (已知)AP AP (公共邊) APNm APC ( SASPC= PN (全等三角形對(duì)應(yīng)邊相等)

20、- 在 BPN中,有PB PN< BN (三角形兩邊之差小于第三邊) BP- PCV AB- AC證明:(補(bǔ)短法) 延長(zhǎng)AC至M使AMkAB,連接PM在公ABP和 AMP中AB AM (輔助線的作法)12 (已知)AP AP (公共邊)設(shè)法作出新的角,且讓此角作為兩個(gè)三角形的公共角。-11 “51 - 11-11 1證明:分別延長(zhǎng)DACB它們的延長(zhǎng)交于E點(diǎn), / AD ± AC BC ± BD (已知)使題中分散的條件集中。五、有三角形中線時(shí),常延長(zhǎng)加倍中線,構(gòu)造全等三角形例如:如圖51 :人口為 ABC的中線求證:AB+ AC>2ADb AD ABC的 中線

21、(已知)/ CAE=Z DBE = 90 ° (垂直的定義)在A DBEA CAE 中EE (公共角)DBE CAE (已證)BDAC (已知) DBEm CAE ( AASB D C ED= EC EB=EA (全等三角形對(duì)應(yīng)邊相等)練習(xí):已知 ABC, AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向形外作等腰直角三角形,如圖5-2,求證EF=2AD。六、截長(zhǎng)補(bǔ)短法作輔助線例如:已知如圖6-1 :在 ABC中,ABAC / 1=Z 2, P為AD上任一點(diǎn)。求證:ABAC> PB- PC,分析:要證:AB ACPB PC,想到利用三角形三邊關(guān)系定理證之,因?yàn)橛C的是線段

22、之差,故用兩邊之差小于第1-V -1 * 三邊,從而想到構(gòu)造第三邊AB - AC,故可在AB上截取 ABPAA AMP ( SAS PB=PM (全等三角形對(duì)應(yīng)邊相等)又-在 PCM中有:CM> PM- PC (三角形兩邊之差小于第三邊) AB- AC> PB- PC七、延長(zhǎng)已知邊構(gòu)造三角形: 例如:如圖 7-1 :已知 AC= BD, AD_LAC于 A , BC_LBD 于 B, 求證:AD= BC分析:欲證AD二BC,先證分別含有AD, BC的三角形全等,有幾種方案:AADC與ABCD ,AOD與BOC'MBD與ABAC,但根據(jù)現(xiàn)有條件,均無(wú)法證全等,差角的相等,因此

23、可圖7 1證明:連接AC (或BD/AB/CD AD/ BC (已知) ABCAA CDA (ASA)AB=CD (全等三角形對(duì)應(yīng)邊相等)九、有和角平分線垂直的線段時(shí),通常把這條線段延長(zhǎng)。例如:如圖 9-1 :在 RtA ABC 中,AB = AC, / BAC = 90°,/ 1 = Z2, CE! BD 的延長(zhǎng)于 E。求 證:BD=2CE分析:要證BD=2CE,想到要構(gòu)造線段2CE,同時(shí)CEP與/ABC的平分線垂直,想到要將其延長(zhǎng)。a E證明:分別延長(zhǎng)BA CE交于點(diǎn)F。D BE! CF (已知)2 一BC / BEF二/ BEC=90° (垂直的定義)圖9 在 A B

24、EF 與Za BEC 中,1 2 (已知)BE BE (公共邊)BEF BEC (已證)* BEF八A BECXASA) - CE=FEJ CF(全等三角形對(duì)應(yīng)邊相等)/ BAC=90 BE _L CF (已知) / BAC=/ CAF= 900/ 1 + / BDA= 907 1 + / BFC= 90 / BDA=/ BFCABDA ACF 中BAC CAF (已證)BDA BFC (已證) AB»A移E A6A。包胎CF (全等三角形對(duì)應(yīng)邊相等)/ BD= 2CE十、連接已知點(diǎn),構(gòu)造全等三角形例如:已知:如圖10-1 ; AC BD相交于。點(diǎn),且AB=DC AC二BD,求證:/

25、 A=Z D。分析:要證/ A=ZD,可證它們所在的三角形4 ABO和ADCO全等,而只有AB=DC和對(duì)頂角兩個(gè)條件,差一個(gè)條件,難以證其全等,只有另尋其它的三角形全等,由AB二DC,AC二BD,若連接BC,則AABC和ADCB全等,所以,證得/ A二ZD。圖10 1證明:連接ABCADA DCB中AB DC (已知)AC DB (已知)BC CB (公共邊) A ABCAA DCB (SSS)/ A=Z D (全等三角形對(duì)應(yīng)邊相等)十一、取線段中點(diǎn)構(gòu)造全等三有形。例J如:如圖 11-1: AB= DC / A=Z D 求證:/ ABC=Z DCB分析:由AB二DC, ZA二ZD,想到如取AD

26、的中點(diǎn)N,連接NB,NC,再由SAS公理有ABN A/DCN,故 BN = CN,/ABN =ZDCN。下面只需證/ NBC =ZNCB,再取 BC 的中點(diǎn)M,連接MN,則由SSS公理有 NBM AJNCM,所以/ NBC二ZNCB。問(wèn)題得證。證明:取AD, BC的中點(diǎn)N、M連接NB NM NC貝U AN=DN BM=C皿在A ABN和A DCNAN DN (輔助線的作法)A DEA-加(已知) ABNAA DCN ( SAS/ ABNkZ DCN NB = NC (全等三角形對(duì)應(yīng)邊、角相等)在A NBMWA NCM 中NB 二 NC (已證) BM = CM (輔助線的作法)NM = NM

27、(公共邊)NBOZ ABN 二 Z. NMB2A NCM (SSS) NBC=Z NCB (全等三角形對(duì)應(yīng)角相等)NCBFZ DCN 即/ ABC=Z DCB巧求三角形中線段的比值例 1.如圖 1,在 ABC中,BD DG=1: 3, AE: ED=2: 3,求AF FC-解:過(guò)點(diǎn)D作DG/AC,交BF于點(diǎn)G所以 DG FC=BD BC因?yàn)?BD DC= 1 : 3 所以 BD BC= 1:4 即 DG FC二 1 : 4, FC二 4DG因?yàn)镈G AF二DE AE又因?yàn)锳E ED= 2 : 3所以CC A 匚 Q . O22AF = t 0G士 DG即 3所以 AF: FC= 3: 4DG=

28、1: 6例 2.如圖 2, BC二 CD AF二 FC 求 EF : FD解:過(guò)點(diǎn)C作CG/DE交AB F點(diǎn)G,因?yàn)?AF二 FC 所以 AF: AC= 1 : 2貝 U 有 EF:GC= AF: AC即 EF: GC= 1 : 2, 因?yàn)?CG DE= BC: BD又因?yàn)锽O CD所以 BC: BD= 1 : 2 CG : DE=1: 2132GC-±GC= ;GC因?yàn)镕D= ED- EF=22所以13-GCi-esc = is)22I即 DE=2GCEF: FD=小結(jié):以上兩例中,輔助線都作在了 “已知”條件中出現(xiàn)的兩條已知線段的交點(diǎn)處,且所作的輔助線與結(jié)論中出現(xiàn)的線段平行。請(qǐng)?jiān)?/p>

29、看兩例,讓我們感受其中的奧妙! tf<-. rr例 3.如圖 3, BD DC= 1 : 3, AE: EB= 2 : 3,求 AF : FDb 解:過(guò)點(diǎn) B 作 BGAD,交 CE 延長(zhǎng)線于點(diǎn)G 所以 DF: BG= CD CB因?yàn)锽DDC=1: 3所以CD C吐3: 4即 DF: BG= 3 : 4,因?yàn)?AF: BG= AE: EB又因?yàn)锳E E吐2 : 3所以 AF: BG=2 : 3-BGx所以 AF: DF= 3-5C?4AF=-BG即 3=8s 9例 4墳口圖 4, BD DO 1 : 3, AF= FD,求 EF: FG 解:過(guò)點(diǎn) D 作 DG/CE,交 AB F點(diǎn) G

30、所以 EF : DG= AF:AD因?yàn)?AF二 FD 所以 AF: AD= 1 : 2EF=-DG即 EF: DG= 1: 22因?yàn)镈G CE= BD BC又因?yàn)锽D CD= 1 : 3,即DG CE= 1 : 4, CE= 4DG174DG-DG-DG因?yàn)?FC二 CE- EF= 22-DGi DG所以 EF : FC= 22-1:7練習(xí):1 .如圖 5, BD= DC AE: ED= 1 : 5,求 AF : FB。2 .如圖 6, AD: DB= 1 : 3, AE: EC= 3 : 1 ,求 BF: FG圖4所以 BD B01: 4FC答案:1、1 : 10;2.9: 1If初中幾何輔

31、助線初中幾何常見(jiàn)輔助線口訣人說(shuō)幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念 還要刻苦加鉆研, 找出規(guī)律憑經(jīng)驗(yàn)。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱(chēng)以后關(guān)系現(xiàn)角平分線平行線, 等腰三角形來(lái)添。角平分線加垂線,三線合一試試看 線段垂直平分線,常向兩端把線連。 線段和差及倍半,延長(zhǎng)縮短可試驗(yàn) 線段和差不等式,移到同一三角去。三角形中兩中點(diǎn), 連接則成中位線三角形中有中線,延長(zhǎng)中線等中線。四邊形平行四邊形出現(xiàn),對(duì)稱(chēng)中心等分點(diǎn)。梯形問(wèn)題巧轉(zhuǎn)換,變?yōu)楹涂谄揭蒲?,移?duì)角,兩 腰延長(zhǎng)作出高。如果出現(xiàn)腰中點(diǎn),細(xì)心連上中位線上述方法不奏效,過(guò)腰中點(diǎn)全等造。證相似,比線段,添線平

32、行成習(xí)慣。等積式子比例 換,尋找線段很關(guān)鍵。直接證明有困難,等量代換少麻煩。斜邊上面作高線,比例中項(xiàng)一 大片。圓形半徑與弦長(zhǎng)計(jì)算,弦心距來(lái)中間站。圓上若有一切線,切點(diǎn)圓心半徑連。切線長(zhǎng)度的計(jì) 算,勾股定理最方便。要想證明是切線,半徑垂線仔細(xì)辨。是直徑,成半圓,想成直角徑 連弦?;∮兄悬c(diǎn)圓心連,垂徑定理要記全。圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊 切線弦,同弧對(duì)角等找完。要想作個(gè)外接圓,各邊作出中垂線。還要作個(gè)內(nèi)接圓,內(nèi)角平 分線夢(mèng)圓如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過(guò)切點(diǎn)公切線。若是 添上連心線,切點(diǎn)肯定在上面。要作等角添個(gè)圓,證明題目少困難。汪意點(diǎn)輔助線,是虛線,畫(huà)圖注意

33、勿改變。假如圖形較分散,對(duì)稱(chēng)旋轉(zhuǎn)去實(shí)驗(yàn)?;咀鲌D很關(guān) 鍵,平時(shí)掌握要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會(huì)減虛心勤學(xué)加苦練,成績(jī)上升成直線由角平分線想到的輔助線口訣:圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱(chēng)以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。角平分線具有兩條性質(zhì):a、對(duì)稱(chēng)性;b、角平分線上的點(diǎn)到角兩邊的距離相 等。對(duì)于有 角平分線的輔助線的作法,一般有兩種。從角平分線上一點(diǎn)向兩邊作垂線; 利用角平分線,構(gòu)造對(duì)稱(chēng)圖形(如作法是在一側(cè)的長(zhǎng)邊上截取短邊)。通常情況下,出現(xiàn)了直角或是垂直等條

34、件時(shí),一般考慮作垂線;其它情況下考慮構(gòu)造對(duì)稱(chēng) 圖形。至于選取哪種方法,要結(jié)合題目圖形和已知條件。與角有關(guān)的輔助線(-)、截取構(gòu)全等幾何的證明在于猜想與嘗試,但這種嘗試與猜想是在一定的規(guī)律基本之上的,希望同學(xué)們能 掌握相關(guān)的幾何規(guī)律,在解決幾何問(wèn)題中大膽地去猜想,按一定的規(guī)律去嘗試。下面就幾何中 常見(jiàn)的定理所涉及到的輔助線作以介紹如圖 1-1,/ AOCM BOC 如取 OE=C)F 并連接 DE DF,則有 OEDAA OFD從而為我們證明線段、角相等創(chuàng)造了條件。例1.如圖12,AB/CD,BE平分/ BCDCE平分/ BCD點(diǎn)E在AD上,求證:BC=AB+CD分析:此題中就涉及到角平分線,可

35、以利用角平分線來(lái)構(gòu)造全等三角形,即利用解平分線來(lái)構(gòu)造軸對(duì)稱(chēng)圖形,同時(shí)此題也是證明線段的和差倍分問(wèn)題,在證明線段的和差倍分問(wèn)題中 常用到的方法是延長(zhǎng)法或截取法來(lái)證明,延長(zhǎng)短的線段或在長(zhǎng)的線段長(zhǎng)截取一部分使之等于短 的線段。但無(wú)論延長(zhǎng)還是截取都要證明線 段的相等,延長(zhǎng)要證明延長(zhǎng)后的線段與某條線段相 等,截取要證明截取后剩下的線段與某條線段相等,進(jìn)而達(dá)到所證明的目的。簡(jiǎn)證:在此題中可在長(zhǎng)線段BC上截取BF=AB再證明CF=CD從而達(dá)到證明的目的。這里面用到了角平分線來(lái)構(gòu)造全等三角形。另外一個(gè)全等自已證明。此 題的證明也可以延長(zhǎng) BE與CD的延長(zhǎng)線交于一點(diǎn)來(lái)證明。自已試一試。例 2,已知:如圖 1-3

36、,AB=2ACZ BAD2 CAD DA=DB 求證 DCLAC分析:此題還是利用角平分線來(lái)構(gòu)造全等三角形。構(gòu)造的方法還是截取線段相等。其它問(wèn)題自已證明例3,已知:如圖14,在 ABC中,/ C=2Z B,AD平分/ BAG求證:ABAC=CD圖1-4分析:此題的條件中還有角的平分線,在證明中還要用到構(gòu)造全等三角形,此題還是證明線段的和差倍分問(wèn)題。用到 的是截取法來(lái)證明的,在長(zhǎng)的線段上截取短的線段,來(lái)證明。試試看可否把短的延長(zhǎng)來(lái)證明呢?練習(xí)1. 已知在 ABC中,AD平分/ BAG / B=2 / C,求證:AB+BD=AC2. 已知:在上' ABC 中 , / CAB=Z B , A

37、E 平分/ CAB 交 BC E,AB=2AC求證:AE=2CE3. 已知:在A ABC中,AB>AC,A為/ BAC的平分線,M為AD上任一點(diǎn)。求證:BM-CM>AB-AC4. 已知:D是ABC的/BACK外角的平分線AD上的任一點(diǎn),連接DBDC 求證:BD+CD>AB+AC(二)、角分線上點(diǎn)向角兩邊作垂線構(gòu)全等過(guò)角平分線上一點(diǎn)向角兩邊作垂線,利用角平分線上的點(diǎn)到兩邊距離相等的性質(zhì)來(lái)證明圖2-1問(wèn)題。例 1 .如圖 2-1,已知 AB>AD, Z BACM FAC,CD=BC 求證:/ ADCZ B=180分析:可由C向Z BAD的兩邊作垂線。近而證Z ADC與Z B

38、 之和為平角。例 2.如圖 2-2,在 ABC 中,Z A=90,AB=ACZ ABDZ CBD求證:BC=AB+AD分析:過(guò)D作DEL BC - E,則AD=DE=CE則構(gòu)造出全等三角形,從而得證。此題是證明線段的和差倍分問(wèn)題,從中利用例3,已知如圖2-3, ABC的角平分線BM CN相交于點(diǎn)P。求證:Z BAC的平比線也繞城占工 分析:連接AP,證AP平分/ BAC即可,也就足證P至UAR AC的距離相等。練習(xí):A,圖2-41.如圖 2-4/AOPWBOP=15 , PC/OA, PCLLO如果PC=4則PD=( )了相當(dāng)于截取的方法。圖2-5E圖2-6CA DB圖2-7A4B3C2D12

39、.已知在 A ABC 中,/ C=90 , AD 平分/ CAB CD=1 .5,DB=2.5.求 AC。3.已知:如圖 2-5, / BACK CAD,AB>AD CF+AR1AE=2 (AB+AD .求證:/ D+Z B=180 °4.已知:如圖26,在正方形ABCD中,E為CD的中點(diǎn),F為BC上的點(diǎn),Z FAEZ DAE 求證:AF=AD+CF5. 已知:如圖 2-7,在 RtA ABC 中,Z ACB=90 ,CD ± AB,垂足為 D, AE平分Z CAB交CD千F.過(guò)F作FH/AB交BC于H °求證CF=BH(三):作角平分線的垂線構(gòu)造等腰三角形

40、從角的一邊上的一點(diǎn)作角平分線的垂線,使之與角的兩邊相交,則截得一個(gè)等腰三角形,垂足為 底邊上的中點(diǎn),該角平分線又成為底邊上的中線和高,以利用中位線的性質(zhì)與等腰三角形的三線合 一的性質(zhì)。(如果題目中有垂直于角平分線的線段,則延長(zhǎng)該線段與角的另一邊相交)。例 1 .已知:如圖 3-1 , Z BADZ DAC AB>AC,Ct!AD 于 D, H 是 BC 中點(diǎn)。1求證:DHh (AB-AC2分析:延長(zhǎng)CD交AB于點(diǎn)E,則可得全等三角形。問(wèn)題可證例 2.已知:如圖 3-2 , AB=ACZ BAC=90 , AD 為 Z ADBC的平分線,CE! BE.求證:BD=2CE可延長(zhǎng)此垂線分析:給

41、出了角平分線給出了邊上的一點(diǎn)作角平分線的垂線,與另外一邊相交,近而構(gòu)造出等腰三角形。例3.已知:如圖3-3在A ABC中,AD AE分別/ BAC的內(nèi)、外角平分線,過(guò)頂點(diǎn)B作BFAD交AD的延長(zhǎng)線于F,連結(jié)FC并延長(zhǎng)交AE于/W求證:AM=ME分析:由AD AE是/ BAC內(nèi)外角平分線,可得EA ± AF, 從而有BFAE,所以想到利用比例線段證相等。例 4.已知:如圖 3-4,在 ABC 中,AD 平分/ BAC AD=AB CMLAD 交 AD 1 延長(zhǎng)線于M求證:AM=(AB+AC2分析:題設(shè)中給出了角平分線AD,自然想到以AD為軸作對(duì)稱(chēng)變換,作 AB1D關(guān)于AD的對(duì)稱(chēng) AED

42、然后只需證DM=EC另外21由求證的結(jié)果AM=(AB+AC,即2AM=AB+AC也可嘗試作 ACM關(guān)于CM的對(duì)稱(chēng) FCM然后只需證DF=C F即可。練習(xí):1. 已知:在上、ABC中,AB=5AC=3D是BC中點(diǎn),AE是/ BAC的平分線,且CELAE于E,連接DE求DE2. 已知BE、BF分別是 ABC的/ABC的內(nèi)角與外角的平分線,AFLBF1F F, AE1 BE于E,連接EF分別交AB AC于M N,求證MN= BC2(四)、以角分線上一點(diǎn)做角的另一邊的平行線有角平分線時(shí),常過(guò)角平分線上的一點(diǎn)作角的一邊的平行線,從而構(gòu)造等腰三角形。或 通過(guò)一邊上的點(diǎn)作角平分線的平行線與另外一邊的反向延長(zhǎng)

43、線相交,從而也構(gòu)造等腰三角形。如 圖4-1和圖4-2所不°c圖4-1圖4-2例 4 如圖 , AB>AC, / 仁/2,求證:AB- AC>BD-CD例 5 如圖,BC>BA BD 平分/ ABC 且 AD=CD 求證:/ A+Z C=18Q如圖,AB/ CD AE DE 分別平分 Z BAD 各 Z ADE 求證:AD=AB+GDDC練習(xí):1 .已知,如圖,Z C=2ZA, AC=2BC求證: ABC是直角三角形2 .已知:如圖,AB=2A(CZ 仁/2, DA=DIB 求證:DCl AC3 .已知CE人。是A ABC的角平分線,/ B=60。,求證:AC=AE+

44、CD4 .已知:如圖在A ABC中,Z A=90°, AB=ACBD是/ ABC的平分線,求證:BC=AB+AD三由線段和差想到的輔助線口訣:線段和差及倍半,延長(zhǎng)縮短可試驗(yàn)。線段和差不等式,移到同一三角去。遇到求證一條線段等于另兩條線段之和時(shí),一般方法是截長(zhǎng)補(bǔ)短法:1、截長(zhǎng):在長(zhǎng)線段中截取一段等于另兩條中的一條,然后證明剩下部分等于另一條;2、補(bǔ)短:將一條短線段延長(zhǎng),延長(zhǎng)部分等于另一條短線段,然后證明新線段等于長(zhǎng)線段。對(duì)于證明有關(guān)線段和差的不等式,通常會(huì)聯(lián)系到三角形中兩線段之和大于第三邊、之差 小于第三邊,故可想辦法放在一個(gè)三角形中證明。一、在利用三角形三邊關(guān)系證明線段不等關(guān)系時(shí),如

45、直接證不出來(lái),可連接兩點(diǎn)或廷長(zhǎng) 某邊構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個(gè)或幾個(gè)三角形中,再運(yùn)用三角形三邊的不等關(guān)系 證明,如:例1、已知如圖11 : D、EABC內(nèi)兩點(diǎn),求證:AB+AC>BD+DE+CE.證明:(法一)將DE兩邊延長(zhǎng)分別交AB AC于M N,在A AMN 中,AM+AN>MD+DE+NE;)在乙' BDM 中,MB+MD>B (2)在A CEN 中,CN+NE>CE ( 3)由(1) + ( 2) + ( 3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE AB+AC>BD+DE+EC(法二:圖 1-2)延長(zhǎng)B

46、D交AC于F,廷長(zhǎng)CE交BF于G在上、ABF和GFCffiA GDE 中有:AB+AF>BD+DG+G三角形兩邊之和大于第三邊)(1)GF+FOGE+C®上)(2)DG+GE>DO 同上)(3)由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DEAB+AC>BD+DE+>EC在利用三角形的外角大于任何和它不相鄰的內(nèi)圖21角時(shí)如直接證不出來(lái)時(shí),可連接兩點(diǎn)或延長(zhǎng)某邊,構(gòu)造三角形,使求證的大角在 某個(gè)三角形的外角的位置上,小角處于這個(gè)三角形的內(nèi)角位置上,再利用外角定 理:例如:如圖2-1 :已知DABC內(nèi)的任一點(diǎn),

47、求證:/ BDC> / BAC分析:因?yàn)? BDC與/ BAC不在同個(gè)三角形中,沒(méi)有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使/ BDC處于在外角的位置,/ BAC處于在內(nèi)角的位置;證法一:延長(zhǎng)BD交AC于點(diǎn)E,這時(shí)/ BDC®八EDC勺外角,/ BDC2 DEC 同理/ DEC2 BAC :_L BDC2 BAC證法二:連接AD并廷長(zhǎng)交BC于F,這時(shí)/ BDF八A ABD的夕卜角,/ BDF2 BAD同理,/ CDF* CAD BDF+/ CDF* BAD* CAD 即:/ BDC* BAC注意:利用三角形外角定理證明不等關(guān)系時(shí),通常將大角放在某三角形的外角位置上,小 角

48、放在這個(gè)三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明有角平分線時(shí),通常在角的兩邊截取相等的線段,構(gòu)造全等三角形,如:例如:如圖3-1 :已知AD ABC的中線,且*仁* 2* 3= * 4,求證:BE+CF>EF °分析要證BE+CF>EF,可利用三角形三邊關(guān)系定理證明,須把BE,CF,EF移到同一個(gè)三角形中,而由已知*仁*2, 3=* 4,可在角的兩邊截取相等的線段,利用三角形全等對(duì)應(yīng) 邊相等,把EN,F(xiàn)N,EF移到同個(gè)三角形中。證明:在DN上截取DN=DB連接NE NF,貝U DN=DC在A DBE?3 NDE中:DN=D (輔助線作法)“ *仁* 2 (已知)"

49、;ED=E (公共邊) DBEAA NDE ( SAS BE=NE (全等三角形對(duì)應(yīng)邊相等)同理可得:CF=NF在AEFN中EN+FN>EF三角形兩邊之和大于第三邊)BE+CF>EF注意:當(dāng)證題有角平分線時(shí),??煽紤]在角的兩邊截取相等的線段,構(gòu)造全等三角形, 然后用全等三角形的對(duì)應(yīng)性質(zhì)得到相等元素。四、截長(zhǎng)補(bǔ)短法作輔助線。例如:已知如圖6-1 :在 ABC中,AB>ACZ仁/ 2, P為AD上任-*占八、求證:AB-AC>PB-PC分析:要證:AB-AOPB-PC想到利用三角形三邊關(guān)系,定理證之,因?yàn)橛C的線段之 差,故用兩邊之差小于第三邊,從而想到構(gòu)造第三邊AB-AC

50、,故可在AB上截取AN等于AC,得AB-AC=BN再連接PN貝U PC=PN又在 PNB中,PB- PNvBN即:AB-AC>PB-PC證明:(截長(zhǎng)法)在AB上截取AN=AC連接PN,在AAPN和/1APC中"AN二AC (輔助線作法),/1 二 Z2 (已知)AP=AP (公共邊)ZAPN幻APC (SAS),/PC=PN (全等三角形對(duì)應(yīng)邊相等)T在ZBPN中,有PB-PNvBN (三角形兩邊之差小于第三邊)BP-PCvAB-AC證明:(補(bǔ)短法)延長(zhǎng)AC至M,使AM二AB,連接PM ,在胡郎和AW中'AB二AM (輔助線作法)/仁Z2 (已知)AP=AP (公共邊)

51、/ABPMMP (SAS)PB二PM (全等三角形對(duì)應(yīng)邊相等)又 . 在ZPCM中有:CM>PM-PC (三角形兩邊之差小于第三邊)AB-AOPB-PC。例 1 如圖,AC平分/ BAD CELAR 且/B+/D=180 ,求證:AE=AD+BEBC例2如圖,在四邊形ABCD中,AC平分/ BAD, CE士AB于E, AD+AB=2AE求證:/ ADC# B=18G0例3已知:如圖,等腰三角形ABC中,AB=AC A=108°, BD平分ABC求證:BC=AB+DC例4如圖,已知RtA ABC中,/ ACB=90 , AD是/ CAB的平分線, DMLAB1*- M,且 AM=

52、M 0 求證:CD=2 DB1 .如圖,AB/ CD AE DE 分別平分/ BAD 各/ ADE 求證:AD=AB+C。2 .如圖, ABC中,/ BAC=90 , AB=AC AE是過(guò)A的一條直線,且B,C在AE的異側(cè),BDL AE 于 D, CELAE 于 E。求證:BD=DE+CE四由中點(diǎn)想到的輔助線口訣:三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長(zhǎng)中線等中線。在三角形中,如果已知一點(diǎn)是三角形某一邊上的中點(diǎn),那么首先應(yīng)該聯(lián)想到三角形的中 線、中位線、加倍延長(zhǎng)中線及其相關(guān)性質(zhì)(直角三角形斜邊中線性質(zhì)、等腰三角形底邊中線性 質(zhì)),然后通過(guò)探索,找到解決問(wèn)題的方法。(一)、中線把原三

53、角形分成兩個(gè)面積相等的小三角形即如圖 1,AD 是 ABC 的中線,貝 U Saabd=Saace=jSaabc (因?yàn)?ABD 與 ACD是等底同高的)A ;例1如圖2,A ABC中,AD是中線,延長(zhǎng)AD到E,使DE=AD DF是 DCE的中線。已知A ABC的面積為2,求:A CDF的面積。解:因?yàn)锳D是A ABC的中線,所以saac= 1 Saab=, X 2=1,又因CD是A AC 2 2】 E 的中線,故 Sacd=Saac=1 '因DF是A CDE勺中線,所以sacdf=A CDF的面積為(二)、由中點(diǎn)應(yīng)想到利用三角形的中位線例2 如圖3,在四邊形ABCD中,AB=CD E

54、、F分別是BC AD的中點(diǎn),BACD的延長(zhǎng)線分別交EF的延長(zhǎng)線G耳求證:/ BGEM CHE證明:連結(jié)BD并取BD的中點(diǎn)為M連結(jié)ME MF ME是A BCD勺中位線, ME1 CD MEFM CHE二Z MF是A ABD勺中位線, MF AB -/MFEM BGE2 AB=CD ME=MF MEFM MFE從而/ BGEM CHE(三)、由中線應(yīng)想到延長(zhǎng)中線例3 .圖4,已知 ABC中,AB=5 AC=3連BC上的中線AD=2求BC的長(zhǎng)。解:延長(zhǎng) AD 至 U E,使 DE=AD 貝 U AE=2AD=£2=4 ° 在4 ACD 和 EBD 中, AD=ED / ADCh

55、EDB CD=BD ACDAA EBD 二 AC=BE從而 BE=AC=3在 A ABE 中,因 AU+BE=42+32=25=AB,故/ E=90° , BD J*- ; I J =1 * I = j,故 BC=2BD=2_;AD又是BC邊上的中例4.如圖5,已知A ABC中,AD是/BAC的平分線,線。求證:A ABC是等腰三角形。證明:延長(zhǎng)AD至U E,使DE=AD仿例3可證:A BED八A CAD故 EB=ACZ E=Z2,又/仁/2, /仁/ E, AB=EB從而AB=AC即pi A ABC是等腰三角形(四)、直角三角形斜邊中線的性質(zhì)例 5.如圖 6,已知梯形 ABCD 中,AB/DC , AC±BC, ADLBD,求證:AC=BD 證 明:取AB的中點(diǎn)E,連結(jié)DE CE貝U DE CE分別為Rt A ABD

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論