版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第六章 樣本及抽樣分布【授課對象】理工類本科二年級【授課時數(shù)】8學(xué)時【授課方法】課堂講授與提問相結(jié)合【基本要求】1、理解總體、個體和樣本的概念;2、了解經(jīng)驗(yàn)分布函數(shù)和直方圖的作法,知道格林汶科定理;3、理解樣本均值、樣本方差和樣本矩的概念并會計算;4、理解統(tǒng)計量的概念,掌握幾種常用統(tǒng)計量的分布及其結(jié)論;5、理解分位數(shù)的概念,會計算幾種重要分布的分位數(shù)。【本章重點(diǎn)】樣本均值、樣本方差和樣本矩的計算;抽樣分布分布,分布,分布;分位數(shù)的理解和計算?!颈菊码y點(diǎn)】對樣本、統(tǒng)計量及分位數(shù)概念的理解;樣本矩的計算?!臼谡n內(nèi)容及學(xué)時分配】§6.0 前 言 5分鐘前面五章我們研究了概率論的基本內(nèi)容,從
2、中得知:概率論是研究隨機(jī)現(xiàn)象的統(tǒng)計規(guī)律性的一門數(shù)學(xué)分支。它是從一個數(shù)學(xué)模型出發(fā)(比如隨機(jī)變量的分布)去研究它的性質(zhì)和統(tǒng)計規(guī)律性;而我們下面將要研究的數(shù)理統(tǒng)計,也是研究大量隨機(jī)現(xiàn)象的統(tǒng)計規(guī)律性,并且是應(yīng)用十分廣泛的一門數(shù)學(xué)分支。所不同的是數(shù)理統(tǒng)計是以概率論為理論基礎(chǔ),利用觀測隨機(jī)現(xiàn)象所得到的數(shù)據(jù)來選擇、構(gòu)造數(shù)學(xué)模型(即研究隨機(jī)現(xiàn)象)。對研究對象的客觀規(guī)律性做出種種合理性的估計、判斷和預(yù)測,為決策者和決策行動提供理論依據(jù)和建議。數(shù)理統(tǒng)計的內(nèi)容很豐富,這里我們主要介紹數(shù)理統(tǒng)計的基本概念,重點(diǎn)研究參數(shù)估計和假設(shè)檢驗(yàn)。§6.1 隨機(jī)樣本 25分鐘一、總體與樣本1.總體、個體在數(shù)理統(tǒng)計學(xué)中,我們
3、把所研究的全部元素組成的集合稱為總體;而把組成總體的每個元素稱為個體。例如:在研究某批燈泡的平均壽命時,該批燈泡的全體就組成了總體,而其中每個燈泡就是個體;在研究華北工學(xué)院男大學(xué)生的身高和體重的分布情況時,該校的全體男大學(xué)生組成了總體,而每個男大學(xué)生就是個體。但在數(shù)理統(tǒng)計里,由于我們關(guān)心的不是每個個體的種種具體特性,而僅僅是它的某一項(xiàng)或幾項(xiàng)數(shù)量指標(biāo)(可以是向量)和該數(shù)量指標(biāo)X在總體的分布情況。在上述例子中X是表示燈泡的壽命或男大學(xué)生的身高和體重。在實(shí)驗(yàn)中,抽取了若干個個體就觀察到了的這樣或那樣的數(shù)值,因而這個數(shù)量指標(biāo)是一個隨機(jī)變量(或向量),而的分布就完全描寫了總體中我們所關(guān)心的那個數(shù)量指標(biāo)的
4、分布狀況。由于我們關(guān)心的正是這個數(shù)量指標(biāo),因此我們以后就把總體和數(shù)量指標(biāo)可能取值的全體組成的集合等同起來。我們對總體的研究,就是對相應(yīng)的隨機(jī)變量的分布的研究,所謂總體的分布也就是數(shù)量指標(biāo)的分布,因此,的分布函數(shù)和數(shù)字特征分別稱為總體的分布函數(shù)和數(shù)字特征。定義1:把研究對象的某項(xiàng)或幾項(xiàng)數(shù)量指標(biāo)的值的全體稱為總體;總體中的每個元素稱為個體。根據(jù)總體中所包括個體的總數(shù),將總體分為:有限總體和無限總體。Ex1:考察一塊試驗(yàn)田中小麥穗的重量: =所有小麥穗重量的全體(無限總體);個體每個麥穗重對應(yīng)的分布: Ex2:考察一位射手的射擊情況:=此射手反復(fù)地?zé)o限次射下去所有射擊結(jié)果全體;每次射擊結(jié)果都是一個個
5、體(對應(yīng)于靶上的一點(diǎn))個體數(shù)量化1在總體中的比例為命中率0在總體中的比例為非命中率總體由無數(shù)個0,1構(gòu)成,其分布為兩點(diǎn)分布 2.樣本與樣本空間。為了對總體的分布進(jìn)行各種研究,就必需對總體進(jìn)行抽樣觀察。抽樣從總體中按照一定的規(guī)則抽出一部分個體的行動。一般地,我們都是從總體中抽取一部分個體進(jìn)行觀察,然后根據(jù)觀察所得數(shù)據(jù)來推斷總體的性質(zhì)。按照一定規(guī)則從總體中抽取的一組個體稱為總體的一個樣本,顯然,樣本為一隨機(jī)向量。 為了能更多更好的得到總體的信息,需要進(jìn)行多次重復(fù)、獨(dú)立的抽樣觀察(一般進(jìn)行次),若對抽樣要求代表性:每個個體被抽到的機(jī)會一樣,保證了的分布相同,與總體一樣。獨(dú)立性:相互獨(dú)立。那么,符合“
6、代表性”和“獨(dú)立性”要求的樣本稱為簡單隨機(jī)樣本。易知,對有限總體而言,有放回的隨機(jī)樣本為簡單隨機(jī)樣本,無放回的抽樣不能保證的獨(dú)立性;但對無限總體而言,無放回隨機(jī)抽樣也得到簡單隨機(jī)樣本,我們本書則主要研究簡單隨機(jī)樣本。對每一次觀察都得到一組數(shù)據(jù)(),由于抽樣是隨機(jī)的,所以觀察值()也是隨機(jī)的。為此,給出如下定義:定義2:設(shè)總體的分布函數(shù)為,若是具有同一分布函數(shù)的相互獨(dú)立的隨機(jī)變量,則稱()為從總體(從分布函數(shù))中得到的容量為的簡單隨機(jī)樣本,簡稱樣本。把它們的觀察值()稱為樣本值。定義3:把樣本()的所有可能取值構(gòu)成的集合稱為樣本空間,顯然一個樣本值()是樣本空間的一個點(diǎn)。二、樣本的分布:設(shè)總體的
7、分布函數(shù)為,密度函數(shù)為,()是的一個樣本,則其分布函數(shù)(聯(lián)合分布)、概率密度函數(shù)(聯(lián)合概率密度函數(shù))分別為:=; =()Ex3:設(shè)總體為其一個簡單隨機(jī)樣本,則 樣本空間 樣本聯(lián)合分布§6.2 分布函數(shù)與概率密度函數(shù)的近似解 20分鐘在概率論中,我們介紹了幾種常用的分布函數(shù)與密度函數(shù)以及它們的性質(zhì),當(dāng)時我們總假定它們都是先給定的,而在實(shí)際中,所遇到的用于描述隨機(jī)現(xiàn)象的隨機(jī)變量,事先并不知道其分布函數(shù)與概率密度函數(shù),甚至連其分布類型也一無所知,那么,怎么樣才能確定它的分布函數(shù)與密度函數(shù)呢?一般地,利用樣本及樣本值,建立一定的概率模型,用由此獲得的概率統(tǒng)計信息來對總體的和進(jìn)行估計和推斷,這
8、就是:一、 經(jīng)驗(yàn)分布函數(shù)。設(shè)()是來自總體的樣本,()是樣本的一個觀察值,設(shè)這個數(shù)值由小到大的順序排列后為:,對R 定義: 稱是總體的經(jīng)驗(yàn)分布函數(shù)。顯然,是單調(diào)非降右連續(xù)的跳躍函數(shù)(階梯函數(shù)),在點(diǎn)處有間斷,在每個間斷點(diǎn)的躍度為,(=1,2,3,)且,=0,=1,它滿足分布函數(shù)的三個性質(zhì),所以必是一個分布函數(shù)。一般地,隨著的增大,越來越接近的分布函數(shù),關(guān)于這一點(diǎn),格列汶科(Gilvenko)在1953年給了理論上的論證,即:定理1.(Gilvenko-Th):若總體的分布函數(shù)為,經(jīng)驗(yàn)分布函數(shù)為,則對R,有:定理表明,以概率1致收斂于,即:可以用來近似,這也是利用樣本來估計和判斷總體的基本理論和
9、依據(jù)。Eg4:某廠從一批熒光燈中抽出10個,測其壽命的數(shù)據(jù)(單位千時)如下:95.5, 18.1, 13.1, 26.5, 31.7, 33.8, 8.7, 15.0, 48.8, 48.3解:將數(shù)據(jù)由小到大排列得:8.7,13.1,15.0,18.1,26.5,31.7,33.8,48.8,49.3,95.5則經(jīng)驗(yàn)分布函數(shù)為: 二、利用直方圖求密度函數(shù)的近似解:設(shè)()為來自總體的一個樣本,其樣本觀察值為(),將該組數(shù)值分成組,可作分點(diǎn):(各組距可以不相等),則各組為:(,(,,(,,若樣本觀察值中每個數(shù)值落在各組中的頻數(shù)分別為,則頻率分別為:,;以各組為底邊,以相應(yīng)組的頻率除以組距為高,建立
10、個小矩形,即得總體的直方圖。由上分析可知:直方圖中每一矩形的面積等于相應(yīng)組的頻率設(shè)總體的密度函數(shù)為,則:總體(真實(shí)值)落在第組(,的概率為:。由Bernoulli大數(shù)定理可知:當(dāng)n很大時,樣本觀察值(單個)落在該區(qū)間的頻率趨近于此概率;即:( ,上矩形的面積接近于在此區(qū)間上曲邊梯形的面積,當(dāng)n無限增大時,分組組距越來越小,直方圖就越接近總體的密度函數(shù)的圖象。(這與定積分的意義具有同樣的道理)。§6.3 樣本的數(shù)字特征 40分鐘0、引言由第三章節(jié)知:隨機(jī)變量的數(shù)字特征,能夠反映隨機(jī)事件的某些重要的概率特征,從第一節(jié)可知,樣本也是一組隨機(jī)變量(隨機(jī)向量),為了詳細(xì)刻劃樣本觀察值中所包含總
11、體的信息及樣本值的分布情況,下面我們研究樣本的數(shù)字特征。一、樣本均值與樣本方差(隨機(jī)變量)設(shè)()是來自總體的一個樣本,()是相應(yīng)的樣本觀察值。定義1,稱為樣本均值。稱為樣本方差。稱為樣本標(biāo)準(zhǔn)差。樣本均值與樣本方差分別刻劃了樣本的位置特征及樣本的離散性特征。二、樣本矩設(shè)總體的分布函數(shù)為,密度為,若,則稱為總體的階原點(diǎn)矩;若,則稱為總體的階中心矩。把總體的各階中心矩和原點(diǎn)矩統(tǒng)稱為總體矩(數(shù)值)表示總體的數(shù)字特征。特別地:=;是總體的期望和方差。仿此,下面給出樣本矩的定義:定義2:設(shè)()是來自總體的一個樣本,()為其樣本值,則樣本的階原點(diǎn)矩(隨機(jī)變量)定義為:,=1,2,3;樣本值的階中心矩(隨機(jī)變
12、量)定義為:,=1,2,3;由上述定義可知:樣本均值、樣本方差、樣本均方差、樣本矩都是關(guān)于樣本的函數(shù),而樣本本身又是隨機(jī)變量(隨機(jī)向量),因此,上述關(guān)于樣本的數(shù)字特征也是隨機(jī)變量,其值分別為:;=; ;=1,2,3;這些值也分別稱為樣本均值、樣本方差、樣本標(biāo)準(zhǔn)差、樣本階原點(diǎn)矩、樣本階中心矩。特別地, ,但與卻不同,由與的計算式可知:,當(dāng)時,=,所以常把記為。并常利用來計算S(標(biāo)準(zhǔn)差)。Eg5:從某班級的期末考試成績中,隨機(jī)抽取10名同學(xué)的成績分別為:100,85,70,65,90,95,63,50,77,86(1)試寫出總體,樣本,樣本值,樣本容量;(2)求樣本均值,樣本方差及二階原點(diǎn)矩解:(
13、1)總體:該班級的期末考試成績;樣本:(,)樣本值:(100,85,70,65,90,95,63,50,77,86)樣本容量: =10(2)(100+85+86)=78.1【注】本例作為學(xué)生使用計算器計算樣本矩的練習(xí)。 10分鐘三、課后作業(yè):1、仔細(xì)閱讀P122-132; 2、作業(yè):P146 3,43、預(yù)習(xí):抽樣分布§6.4 抽 樣 分 布 100分鐘0、引言有了總體和樣本的概念,能否直接利用樣本來對總體進(jìn)行推斷呢?一般來說是不能的,需要根據(jù)研究對象的不同,構(gòu)造出樣本的各種不同函數(shù),然后利用這些函數(shù)對總體的性質(zhì)進(jìn)行統(tǒng)計推斷,為此,我們首先介紹數(shù)理統(tǒng)計的另一重要概念統(tǒng)計量。一、統(tǒng)計量(
14、隨機(jī)變量)定義1:設(shè)()是來自總體的一個樣本,()是的函數(shù),若為實(shí)值函數(shù),且中不含任何未知參數(shù),則稱()是一個統(tǒng)計量。事實(shí)上§6.3中的樣本均值、樣本方差、樣本矩都是統(tǒng)計量;再如是來自總體的一個樣本,則都是統(tǒng)計量,而就不是統(tǒng)計量。由§6.1知:()是隨機(jī)變量,而統(tǒng)計量是樣本()的函數(shù),所以統(tǒng)計量也是隨機(jī)變量(隨機(jī)變量的函數(shù)為隨機(jī)變量)。我們把統(tǒng)計量的分布稱為抽樣分布。而統(tǒng)計量是我們對總體的分布函數(shù)或數(shù)字特征進(jìn)行統(tǒng)計推斷的最重要的基本概念,所以尋求統(tǒng)計量的分布成為數(shù)理統(tǒng)計的基本問題之一。然而要求出一個統(tǒng)計量的精確分布是十分困難的。而在實(shí)際問題中,大多總體都服從正態(tài)分布:而對于
15、正態(tài)分布,我們可以求出一些重要統(tǒng)計量的精確分布,這就是:二、幾種常用的抽樣分布:(正態(tài)分布中的幾種統(tǒng)計量的分布)把分布,分布,分布,統(tǒng)稱為“統(tǒng)計三大分布”。1、正態(tài)分布由正態(tài)分布的性質(zhì),可得如下結(jié)論:定理:設(shè)相互獨(dú)立,,是關(guān)于的任一確定的線性函數(shù)(), 則也服從正態(tài)分布,即:。從而有:若()是來自總體的一個樣本,為樣本均值,則,由上述結(jié)論可知:的期望與的期望相同,而的方差卻比的方差小的多,即的取值將更向集中。2、 分布1)、定義:設(shè)()是來自總體 的一個樣本,則稱統(tǒng)計量:所服從的分布是自由度為(指上式中所含獨(dú)立變量的個數(shù))的分布。記作:的概率密度函數(shù)為: ,其中:,顯然, ,且,即符合密度函數(shù)
16、性質(zhì)。事實(shí)上,2) 分布的性質(zhì)I、分布的可加性:設(shè),且與相互獨(dú)立,則:+II、若,則,事實(shí)上,因?yàn)椋瑒t:,所以:;3) 結(jié)論:設(shè)()為來自總體的一個樣本,,為已知常數(shù),則:I ) 統(tǒng)計量 (當(dāng)=0時也成立)II) 樣本均值與樣本方差相互獨(dú)立,且統(tǒng)計量。對I,事實(shí)上若,則,所以;對II,參閱有關(guān)數(shù)理統(tǒng)計的課本。3、分布1) 定義:設(shè),且與相互獨(dú)立,則稱隨機(jī)變量:所服從的分布是自由度為的分布,記為,分布又稱為學(xué)生氏(Student)分布。分布的概率密度函數(shù)為: 。2) 分布的特點(diǎn)(性質(zhì))。I、關(guān)于=0對稱;II、在=0達(dá)最大值;III、的軸為水平漸近線;IV、;即時,分布,一般地,當(dāng)>30時
17、,分布與非常接近。V、當(dāng)較小時,分布與有較大的差異,且對有,其中。即分布的尾部比的尾部具有更大的概率。VI、若,則 時,3) 結(jié)論:I)設(shè)()是來自總體的一個樣本,則統(tǒng)計量:,事實(shí)上,由,又,且與相互獨(dú)立,則與相互獨(dú)立,由分布的定義,所以 II)設(shè)()是來自總體的一個樣本,(是來自總體的一個樣本,且它們是相互獨(dú)立的,則統(tǒng)計量,其中, 事實(shí)上,且與相互獨(dú)立,所以:,即:;又,且它們相互獨(dú)立,由分布的可加性,則 。由分布的定義:4、分布1) 定義:設(shè),且與相互獨(dú)立,則稱隨機(jī)變量所服從的分布是自由度為的分布,記作:,其中:為第一自由度,為第二自由度。由定義,顯然有:;若,則。的概率密度函數(shù)為: 說明:先求出 的聯(lián)合密度函數(shù),再令,求出()的聯(lián)合,注意到獨(dú)立,所以的邊緣密度函數(shù),也即的密度函數(shù)。2) 分布的性質(zhì)(特點(diǎn))I. 密度曲線不對稱(偏態(tài))II. 若,且與獨(dú)立,則:III. 若,則IV. 當(dāng)時,當(dāng)時,注:(利用)3) 結(jié)論:設(shè)()是來自總體的一個樣本,(是來自總體的一個樣本,且它們是相互獨(dú)立,則,事實(shí)上,由分布的定義,則:,其中,;四、分位數(shù):定義:設(shè)為某變量的分布函數(shù), 若有使,則稱為此概率分布的分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024藕塘承包與農(nóng)業(yè)產(chǎn)業(yè)化發(fā)展合作合同范本3篇
- 2024房租租賃合同補(bǔ)充協(xié)議
- 2019年7月國家開放大學(xué)專科《高等數(shù)學(xué)基礎(chǔ)》期末紙質(zhì)考試試題及答案
- 焦慮癥健康宣教
- 2024年解除婚姻關(guān)系后贍養(yǎng)費(fèi)協(xié)議
- 2024水電安裝勞務(wù)分包合同協(xié)議書-農(nóng)村飲水安全工程專用3篇
- 2024某電子商務(wù)公司與社交媒體平臺廣告投放合同
- 福建省南平市太平鎮(zhèn)中學(xué)高三數(shù)學(xué)理期末試卷含解析
- 2024洗滌服務(wù)綠色環(huán)保材料采購合同書3篇
- 2024年酒店食堂蔬菜品質(zhì)提升采購協(xié)議2篇
- 中小學(xué)生志愿服務(wù)記錄表、評定表
- 排洪溝工程設(shè)計說明
- 常用法語財務(wù)詞匯
- (整理版高中英語)杭高第一學(xué)期期末考試高一英語試卷
- 學(xué)校食堂生鮮肉(豬肉、牛肉、羊肉、雞鴨鵝肉)配送服務(wù)方案
- SMT工資方案(原創(chuàng))
- 關(guān)于礦棉裝飾吸聲板檢驗(yàn)報告加圖標(biāo)版
- 大紅色節(jié)word感謝信信紙背景模板
- 安全檢查匯報材料
- 2005年海南高考理科綜合真題及答案
- 機(jī)房巡檢記錄表.doc
評論
0/150
提交評論