




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、學(xué)習(xí)-好資料Class4:Inferenceinmultipleregression.I.TheLogicofStatisticalInferenceThelogicofstatisticalinferenceissimple:wewouldliketomakeinferencesaboutapopulationfromwhatweobservefromthesamplethathasbeendrawnrandomlyfromthepopulation.Thesamples'characteristicsarecalled"pointestimates."Itisa
2、lmostcertainthatthesample'scharacteristicsaresomewhatdifferentfromthepopulation'scharacteristics.Butbecausethesamplewasdrawnrandomlyfromthepopulation,thesample'scharacteristicscannotbe"verydifferent"fromthepopulation'scharacteristics.WhatdoImeanby"verydifferent"?T
3、oanswerthisquestion,weneedadistancemeasure(ordispersionmeasure),calledthestandarddeviationofthestatistic.Tosummarize,statisticalinferencesconsistoftwosteps:Pointestimates(samplestatistics)(2)Standarddeviationsofthepointestimates(dispersionofsamplestatisticsinahypotheticalsamplingdistribution).II.Rev
4、iew:Forasampleoffixedsizei-1,n,yisthedependentvariable;X=1兇,Xpcontainsindependentvariables.Wecanwritethemodelinthefollowingway:頭二二,Undercertainassumptions,theLSestimatorb=(XX)XyAscertaindesirableproperties:A1=>unbiasednessandconsistency12A1+A2=>BLUE,withV(b)=(XX)ai+A2+A3=>bueV(b)=(XX)'二
5、2(evenforsmallsamples),and variance ofIII. TheCentralLimitTheoremStatement:Themeanofiidrandomvariables(withmeanof_2、,.,.-1)approachesanormaldistributionasthenumberofrandomvariablesincreases.Xn-N(,二2/n),asn一二學(xué)習(xí)-好資料Thepropertybelongstothestatistic-samplemeaninthesamplingdistributionofallsamplemeans,ev
6、enthoughtherandomvariablesthemselvesarenotnormallydistributed.Youcannevercheckthisnormalitybecauseyoucanonlyhaveonesamplestatistic.Inregressionanalysis,wedonotassumethat;isnormallydistributedifwehavealargesample,becauseallestimatedparametersapproachtonormaldistributions.Why:allLSestimatesarelinearfu
7、nctionof;(provedlasttime).Recallatheorem:alineartransformationofavariabledistributedasnormalisalsodistributedasnormal.IV. InferencesaboutRegressionCoefficientsA. PresentationofRegressionResultsCommonpractice:giveastarbesidetheparameterestimateforsignificancelevelof0.05,twostarsfor0.01,andthreestarsf
8、or0.001.Forexample:DependentVariable:EarningsIndependentVariable:Father'seducation0.900*Mother'seducation0.501*Shoesize-2.16Whatistheproblemwiththispractice?First,wewanttohaveaquantitativeevaluationofthesignificancelevel.Weshouldnotblindlyrelyonstatisticaltests.Forexample,Father'seducati
9、on0.900*(0.450)Mother'seducation0.501*(0.001)Shoesize-2.16(1.10)Inthiscase,isfather'seducationmuchmoresignificantthanshoesize?Notreally.Theyareverysimilar.Bycontrast,mother'sisfarmoresignificantthantheothertwo.Asecondpracticeistoreportthetorzvalues:Coeffi.t.Father'seducation0.9002.0M
10、other'seducation0.501500.Shoesize-2.16-1.96Thissolutionismuchbetter.However,veryoften,ourhypothesisisnotaboutdeviationfromzero,butfromotherhypotheticalvalues.Forexample,weareinterestedinthehypothesiswhetheraone-yearincreaseinfather'seducationwillincreaseson'seducationbyoneyear.Thehypothe
11、sishereis1insteadof0.學(xué)習(xí)-好資料Thepreferredwayofpresentationis:Coeff.(S.E.)Father'seducation0.900(0.450)Mother'seducation0.501(0.001)Shoesize-2.16(1.10)B. DifferencebetweenStatisticalSignificanceandtheSizeofanEffectStatisticalsignificancealwaysreferstoastatedhypothesis.Youwillseealotofmisusesint
12、heliterature,sometimesbywell-knownsociologists.Theywouldsaythatthisvariableishighlysignificant.Thatoneisnotsignificant.Thisisnotcorrect.Iamnotresponsiblefortheirmistakes,butIwanttowarnyounottocommitthesamemistakesagain.Inourexample,youcouldsayMother'seducationishighlysignificantfromzero.Butitisn
13、otsignificantfrom0.5.HadyourhypothesisbeenthattheparameterforMother'seducationis0.5,theresultwouldbeconsistentwiththehypothesis.Thatis,statisticalsignificanceshouldalwaysbemadewithreferencetoahypothesis.Followz=(b2-0)/S是Anothercommonmistakeistoequatestatisticalsignificancewiththesizeofaneffect.A
14、variablecanbestatisticallysignificantfromzero.Buttheestimatedcoefficientissmall.Thecontributionoffather'seducationtothedependentvariableislargerthanthatofmother'seducationeventhoughmother'seducationismorestatisticallysignificantfromzerothanfather'seducation.Important:youshouldlookatb
15、othcoefficientsandtheirstandarderrors.C. ConfidenceIntervalsforSingleParameters'-j-bj-1.96SE(bj)D. HypothesisTestingforSingleParametersComparez=(bj,j°)/SE(bj),ifzisoutsidetherangeof-1.96and1.96,thehypothesisisrejected.Otherwise,wefailtorejectthehypothesis.學(xué)習(xí)-好資料V. InferencesaboutLinearCombi
16、nationsofTwoParametersExample 1: I'1=:2(equalityhypothesis),=>:i_:2=0Example 2: 卜11=IO!:(proportionalityhypothesis),=>-1-10-2=0Example 3: %=:242(surplushypothesis),=>:1-:2=2In general form, we may haveHypothesis testing:Confidence interval:c1:1-C2:2(H。C1-1C2-2=cC1-1'c2-2liesbetween(
17、lowlimit,upperlimit)Procedure:A. Pointestimate:Computec1b1c2b2B. DegreeofImprecisionV(c1b1c2b2)=c2V(b1)c2V(bz)2c1c2Cov(b1,b2)andthentakesquarerootofV(c1b1c2b2).Wewouldneedtoobtainthevariance-covariancematrixoftheparametervectorinordertocarryoutthecalculation.V(b1)andV(b2)areonthediagonal,Cov(b1,b2)i
18、soff-diagonal.Letuslookatthefirsthalftheexample.Computetheconfidenceintervalforthehypothesisthat-1=-2.Step1.b1-b2=0.5732-0.3146=0.2586.Step2:V(b1-b2)=0.0642+0.0310-2*(-0.0227)=0.1406.SD(b1-b2)=0.14061/2=0.3750.學(xué)習(xí)-好資料Step3:Computet2=(0.2586-0)/0.3750=0.6897,insignificant(unsurprisingresult).NoteDF=5-
19、3=2.Iusetwoparametersasanexample.ExamplesofHypothesisTesting:Example 1: :1=:2(equalityhypothesis),=>:1-:2=0Example 2: 11=10:2(proportionalityhypothesis),=>'-1-10-2=0Example 3: :1=:2'2(surplushypothesis),=>:1-*2=2Ingeneralform,WemayhaveC1-1c2-2=Hypothesistesting:C1:1c2:2=cConfidencei
20、nterval:C1:1c2-2liesbetween(lowlimit,upperlimit)Procedure:A. Findpointestimate:Computec1b1+c2b2B. FinddegreeofImprecision2.2.Vc1b1c2b2=c1Vb1c2Vb2廣2c1c2Covb1,b2andthentakesquarerootofVc1b1c2b2.Wewouldneedtoobtainthevariance-covariancematrixoftheparametervectorinordertocarryoutthecalculation.V(b1)andV
21、(b2)areonthediagonal,Cov(b1,b2)isoff-diagonal.學(xué)習(xí)-好資料NumericalExample:MultipleregressionsForthefollowingsmalldataset(n=5),usematrixoperationstosolvethefollowingproblems.Youshouldmakeuseoftheinformationbelowasmuchaspossible.Let-1X1X21y'=103241“二102041X2'=02456】Itisknownthat5717X'X=7321. 81一10X'y=:46J.7030-.0239-.1381(XX)、=-.0239.1205-.0426.1381-.0426.0582j更多精品文檔1.WriteoutXandy_infull.1xii1X21X=1X311X411X51X12X22X32X42X521111-1100224,y0546丁0324-5XX = 7:172. WriteXXandXyinfull.717102132,Xy=233281J46學(xué)習(xí)-好資料3.Estimatebwiththehelpofacalculator(bistheleastsquaresestimatorofI',
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 嘉應(yīng)學(xué)院《公共部門人力資源開發(fā)與管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 寧夏民族職業(yè)技術(shù)學(xué)院《信息技術(shù)教學(xué)設(shè)計(jì)與案例分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 墨玉縣2025年四下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題含解析
- 內(nèi)蒙古大學(xué)《俄羅斯文學(xué)俄》2023-2024學(xué)年第二學(xué)期期末試卷
- 江蘇省張家港市重點(diǎn)名校2024-2025學(xué)年高中畢業(yè)班零診模擬考試物理試題含解析
- 宿州航空職業(yè)學(xué)院《動(dòng)畫創(chuàng)作》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘇州高博軟件技術(shù)職業(yè)學(xué)院《熱工基礎(chǔ)2》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津醫(yī)科大學(xué)臨床醫(yī)學(xué)院《生產(chǎn)運(yùn)作管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西工程學(xué)院《高等儀器分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 揚(yáng)州工業(yè)職業(yè)技術(shù)學(xué)院《中國(guó)現(xiàn)當(dāng)代文學(xué)A(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 新人教版八年級(jí)下冊(cè)英語全冊(cè)教案(教學(xué)設(shè)計(jì))
- 2022年河南省鄭州市中考二模語文試卷
- 東莞市衛(wèi)生與健康十三五規(guī)劃
- 土壤分析技術(shù)規(guī)范(第二版)
- 3力浮力答案第1講難題型密度計(jì)
- 地下車庫(kù)交通標(biāo)志標(biāo)線及地坪漆工程施工組織設(shè)計(jì)
- 專題一電磁感應(yīng)與電路ppt課件
- 植物界分類檢索表種子植物分科檢索表
- GDFJ005修改個(gè)人信息申請(qǐng)表
- JJF 1363-2019硫化氫氣體檢測(cè)儀型式評(píng)價(jià)大綱(高清版)
- 氟喹諾酮類抗菌藥物的不良反應(yīng)和臨床應(yīng)用概要
評(píng)論
0/150
提交評(píng)論