




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第六章實(shí)數(shù)考點(diǎn)一、實(shí)數(shù)的概念及分類(lèi)1、實(shí)數(shù)的分類(lèi)2、無(wú)理數(shù)在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)這一點(diǎn),歸納起來(lái)有四類(lèi) 1開(kāi)方開(kāi)不盡的數(shù),如7, 32 等; 2有特定意義的數(shù),如圓周率,或化簡(jiǎn)后含有 的數(shù),如 +8 等;3 3有特定構(gòu)造的數(shù),如0.1010010001, 等; 4某些三角函數(shù),如sin60o 等這類(lèi)在初三會(huì)出現(xiàn)0判斷一個(gè)數(shù)是否是無(wú)理數(shù),不能只看形式,要看運(yùn)算結(jié)果,如, 16 是有理數(shù),而不是無(wú)理數(shù)。3、有理數(shù)與無(wú)理數(shù)的區(qū)別 1有理數(shù)指的是有限小數(shù)和無(wú)限循環(huán)小數(shù),而無(wú)理數(shù)那么是無(wú)限不循環(huán)小數(shù); 2所有的有理數(shù)都能寫(xiě)成分?jǐn)?shù)的形式整數(shù)可以看成是分母為 1 的分?jǐn)?shù),而無(wú)理數(shù)那么不能寫(xiě)成分?jǐn)?shù)
2、形式。考點(diǎn)二、平方根、算術(shù)平方根、立方根1、概念、定義 1如果一個(gè)正數(shù)x 的平方等于a,即,那么這個(gè)正數(shù)x 叫做 a 的算術(shù)平方根。 2如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a 的平方根或二次方跟 。如果,那么 x 叫做 a的平方根。 3如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)就叫做a 的立方根或a 的三次方根 。如果,那么 x叫做 a 的立方根。2、運(yùn)算名稱(chēng)( 1求一個(gè)正數(shù) a 的平方根的運(yùn)算,叫做開(kāi)平方。平方與開(kāi)平方互為逆運(yùn)算。( 2求一個(gè)數(shù)的立方根的運(yùn)算,叫做開(kāi)立方。開(kāi)立方和立方互為逆運(yùn)算。3、運(yùn)算符號(hào) 1正數(shù) a 的算術(shù)平方根,記作“a 。 2 a(a 0)的平方根的符號(hào)表達(dá)為。- 1 -
3、 3一個(gè)數(shù) a 的立方根,用表示,其中a 是被開(kāi)方數(shù), 3 是根指數(shù)。4、運(yùn)算公式4、開(kāi)方規(guī)律小結(jié) 1假設(shè) a 0,那么 a 的平方根是a , a 的算術(shù)平方根a ;正數(shù)的平方根有兩個(gè),它們互為相反數(shù),其中正的那個(gè)叫它的算術(shù)平方根;0 的平方根和算術(shù)平方根都是0;負(fù)數(shù)沒(méi)有平方根。實(shí)數(shù)都有立方根,一個(gè)數(shù)的立方根有且只有一個(gè),并且它的符號(hào)與被開(kāi)方數(shù)的符號(hào)一樣。正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0 的立方根是0。2a<0a 為任意實(shí)數(shù),那么a 的立方根是。 假設(shè),那么 a 沒(méi)有平方根和算術(shù)平方根;假設(shè) 3正數(shù)的兩個(gè)平方根互為相反數(shù),兩個(gè)互為相反數(shù)的實(shí)數(shù)的立方根也互為相反數(shù)??键c(diǎn)三、實(shí)數(shù)的
4、性質(zhì)有理數(shù)的一些概念,如倒數(shù)、相反數(shù)、絕對(duì)值等,在實(shí)數(shù)范圍內(nèi)仍然不變。1、相反數(shù)( 1實(shí)數(shù) a 的相反數(shù)是 -a;實(shí)數(shù)與它的相反數(shù)是一對(duì)數(shù)只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零 2從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),如果a 與 b 互為相反數(shù),那么有a+b=0,a=-b ,反之亦成立。2、絕對(duì)值 1要正確的理解絕對(duì)值的幾何意義,它表示的是數(shù)軸上的點(diǎn)到數(shù)軸原點(diǎn)的距離,數(shù)軸分為正負(fù)兩半,那么不管怎樣總有兩個(gè)數(shù)字相等的正負(fù)兩個(gè)數(shù)到原點(diǎn)的距離相等。|a|0。 2假設(shè) |a|=a,那么 a0;假設(shè) |a|=-a,那么 a0,零的絕對(duì)值是它本身。a(a0) 3a(a0)3、倒
5、數(shù) 1如果 a 與 b 互為倒數(shù),那么有ab=1,反之亦成立。實(shí)數(shù)a 的倒數(shù)是1/aa 0 2倒數(shù)等于本身的數(shù)是1 和 -1。零沒(méi)有倒數(shù)??键c(diǎn)四、實(shí)數(shù)的三個(gè)非負(fù)性及性質(zhì)1、在實(shí)數(shù)范圍內(nèi),正數(shù)和零統(tǒng)稱(chēng)為非負(fù)數(shù)。2、非負(fù)數(shù)有三種形式 1任何一個(gè)實(shí)數(shù)a 的絕對(duì)值是非負(fù)數(shù),即|a| 0; 2任何一個(gè)實(shí)數(shù)a 的平方是非負(fù)數(shù),即 0;- 2 - 3任何非負(fù)數(shù)的算術(shù)平方根是非負(fù)數(shù),即()。3、非負(fù)數(shù)具有以下性質(zhì)( 1非負(fù)數(shù)有最小值零; 2非負(fù)數(shù)之和仍是非負(fù)數(shù);( 3幾個(gè)非負(fù)數(shù)之和等于 0,那么每個(gè)非負(fù)數(shù)都等于 0.考點(diǎn)五、實(shí)數(shù)大小的比擬實(shí)數(shù)的大小比擬的法那么跟有理數(shù)的大小比擬法那么一樣:( 1正數(shù)大于 0,
6、 0 大于負(fù)數(shù),正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù)比擬,絕對(duì)值大的反而??;( 2實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng),在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;( 3兩個(gè)數(shù)比擬大小常見(jiàn)的方法有:求差法,求商法,倒數(shù)法,估算法,平方法。( 4對(duì)于一些帶根號(hào)的無(wú)理數(shù), 我們可以通過(guò)比擬它們的平方或者立方的大小。常用有理數(shù)來(lái)估計(jì)無(wú)理數(shù)的大致范圍,要想正確估算需記熟0 20 之間整數(shù)的平方和 0 10 之間整數(shù)的立方考點(diǎn)六、實(shí)數(shù)的運(yùn)算( 1在實(shí)數(shù)范圍內(nèi),可以進(jìn)展加、減、乘、除、乘方及開(kāi)方運(yùn)算( 2有理數(shù)的運(yùn)算法那么和運(yùn)算律在實(shí)數(shù)范圍內(nèi)仍然成立( 3實(shí)數(shù)混合運(yùn)算的運(yùn)算順序與有理數(shù)的運(yùn)算順序根本一樣,先乘方、開(kāi)方、再乘除
7、,最后算加減。同級(jí)運(yùn)算按從左到右順序進(jìn)展,有括號(hào)先算括號(hào)里。( 4在實(shí)數(shù)的運(yùn)算中,當(dāng)遇到無(wú)理數(shù)時(shí),并且需要求結(jié)果的近似值時(shí),可以按照所要求的準(zhǔn)確度用相應(yīng)的近似有限小數(shù)去代替無(wú)理數(shù),再進(jìn)展計(jì)算。二、典例剖析,綜合拓展知識(shí)點(diǎn) 1:算術(shù)平方根1.1的算術(shù)平方根為 A1B1 C±1D1 2169131313169算術(shù)平方根的定義:2.1的算術(shù)平方根可表示為,即=169算術(shù)平方根的表示方法:用含 a 的式子表示13. 有算術(shù)平方根嗎? 8 的算術(shù)平方根是 2 嗎?169算術(shù)平方根具有性,即被開(kāi)方數(shù)a0,a 本身0,必須同時(shí)成立4、 511的小數(shù)局部為 m, 511 的小數(shù)局部為 n ,那么 m
8、n跟蹤練習(xí):式子x3 有意義, x 的取值范圍: y=x5 +5x +3, 求 xy 的值3ab40 ,求 a+b 的值- 3 -知識(shí)點(diǎn) 2:平方根1. 49的平方根是,算術(shù)平方根是,它的平方根可表示為;2、9 的平方根是3、快速地表示并求出以下各式的平方根1 9| 5| 0.81 9216平方根的定義:平方根的表示方法用含 a 的式子表示平方根的性質(zhì):4 、如果一個(gè)數(shù)的平方根是a1 和 2a7 ,求這個(gè)數(shù)5. 用平方根定義解方程 16 x+22 =814x2 -225=06、以下說(shuō)法正確的選項(xiàng)是 ()6 表示 6 的算術(shù)平方根的相反數(shù)A、 16 的平方根是4B 、C、 任何數(shù)都有平方根D、
9、a2一定沒(méi)有平方根知識(shí)點(diǎn) 3:立方根1. 8 的立方根是,表示為立方根的表示方法:用含 a 的式子表示2. 說(shuō)出以下各式表示的意義并求值:30.512= 3729=3 ( 2)3 =3 83=3. 如果 3 x 2 有意義, x 的取值范圍為4. 用立方根的定義解方程x 3-27 =0 2 x+3 3=512拓展提高:1、31.732,305.477, 1 300;20.3; 30.03 的平方根約為; 4假設(shè)x54.77 ,那么 x2、 331.442, 3303.107, 33006.694,求 1 30.3; 23000 的立方根約為; 33 x31.07 ,那么 x知識(shí)點(diǎn) 4:重要公式
10、- 4 -公式一 :22422 =3 =( 2)2=( 3)2=( 4)2=a 2=有關(guān)練習(xí):1.(1 ) 2=19992=72. 如果如果(a3) 2=a-3 ,那么 a 的取值范圍是;(a3) 2=3-a, 那么 a 的取值范圍是3. 數(shù) a,b 在數(shù)軸上的位置如圖:化簡(jiǎn):(ab) 2 +|c+a|ab0C公式二:4 2=9 2=25 2= ( a ) 2=(a0)綜合公式一和二,可知,當(dāng)滿(mǎn)足a條件時(shí),a2= ( a ) 2公式三: 323 =333=343 =3( 2)3=3( 3)3=3( 4)3= 3 a 3=;隨堂練習(xí):化簡(jiǎn):當(dāng)1a3時(shí),(1a)2+ 3(a3) 3公式四: 383
11、 =3 273=3 1253= (3a )3 =綜合公式三和四,可知,當(dāng)滿(mǎn)足a條件時(shí), 3 a3= (3 a ) 3公式五:3a =- 5 -知識(shí)點(diǎn)五:實(shí)數(shù)定義及分類(lèi)無(wú)理數(shù)的定義:實(shí)數(shù)的定義:實(shí)數(shù)與上的點(diǎn)是一一對(duì)應(yīng)的1、判斷以下說(shuō)法是否正確:1實(shí)數(shù)不是有理數(shù)就是無(wú)理數(shù)。 2無(wú)限小數(shù)都是無(wú)理數(shù)。3無(wú)理數(shù)都是無(wú)限小數(shù)。 4根號(hào)的數(shù)都是無(wú)理數(shù)。一、選擇題 ( 每題 3 分, 共 36 分)1. 以下等式正確的選項(xiàng)是A ( 3)2 3 B144 ± 12 C82 D2552. 算術(shù)平方根等于 3 的是 A 3B3C 9D 93.以下說(shuō)法: 1任何數(shù)都有算術(shù)平方根; 2一個(gè)數(shù)的算術(shù)平方根一定是
12、正數(shù);2的算術(shù)平方根是a; 3a4 4 2 的算術(shù)平方根是4; 5算術(shù)平方根不可能是負(fù)數(shù)。其中不正確的有A5個(gè)B4 個(gè)C3 個(gè)D2 個(gè)4. 假設(shè)一個(gè)數(shù)的平方根與它的立方根完全一樣,那么這個(gè)數(shù)是A0B1C 1D±1, 05. 假設(shè) x =x,那么實(shí)數(shù) x 是 (A) 負(fù)實(shí)數(shù) B 所有正實(shí)數(shù)C 0 或 1 D不存在6. 假設(shè)a2 =-a ,那么實(shí)數(shù) a 在數(shù)軸上的對(duì)應(yīng)點(diǎn),一定在(A) 原點(diǎn)左側(cè) B原點(diǎn)右側(cè)C原點(diǎn)或原點(diǎn)左側(cè) D原點(diǎn)或原點(diǎn)右側(cè)6.在實(shí)數(shù) 0 3,0 , 7 , 0123456 , 中,無(wú)理數(shù)的個(gè)數(shù)是2(A) 2B3C4D57.以下各式中,無(wú)意義的是(A) .32B. 3 (
13、3)3C .(3)2D. 10 38.4 14 、226 、 15 三個(gè)數(shù)的大小關(guān)系是(A) .414 <15< 226 B226<15<414C 414<226 <15 D226<414<159. 化簡(jiǎn)(2) 4的結(jié)果是(A) . 4B.4C± 4D 無(wú)意義- 6 -二、填空題 ( 每題 3 分, 共 24 分)10.如果x3 =2,那么 (x+3)2=_11.假設(shè)2a2 與 |b+2|是互為相反數(shù),那么 (a b)2=_.13. 一個(gè)正方形的面積擴(kuò)大為原來(lái)的100 倍,那么其邊長(zhǎng)擴(kuò)大為原來(lái)的倍。16. 點(diǎn) A 在數(shù)軸上和原點(diǎn)相距5 個(gè)單位,點(diǎn) B 在數(shù)軸上和原點(diǎn)相距3 個(gè)單位,且點(diǎn)B 在點(diǎn) A左邊,那么AB之間的距離為 _14.一個(gè)三角形的三邊分別是a, b, c,那么(a b c)2_;( a bc) 2=_ 15.a是一個(gè)兩位數(shù)的十位數(shù)字,b 是它的個(gè)位數(shù)字,那么這個(gè)數(shù)可表示為.16.4 2 的算術(shù)平方根是 _,25 的平方根是 _, 8 的立方根是 _17.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷凍食品采購(gòu)合同
- 建設(shè)工程施工合同空
- 拆遷工程承包合同
- 無(wú)底薪房產(chǎn)銷(xiāo)售合同年
- 度電線電纜購(gòu)銷(xiāo)合同匯編
- 城市公園環(huán)境監(jiān)測(cè)與維護(hù)合同
- 《分布式能源》 教學(xué)大綱
- 《動(dòng)物行為的研究》
- 寬帶網(wǎng)絡(luò)電話客戶(hù)簽約合同 (2025年版)
- 委托裝潢服務(wù)合同范本
- 垃圾分類(lèi)科普課件
- 精益六西格瑪綠帶課件
- 蘇軾的一生課件
- 工程設(shè)計(jì)費(fèi)收費(fèi)標(biāo)準(zhǔn)
- 環(huán)網(wǎng)柜基礎(chǔ)知識(shí)培訓(xùn)課程完整版課件
- 海姆立克急救(生命的擁抱)課件
- 土方回填試驗(yàn)報(bào)告
- 越南語(yǔ)基礎(chǔ)實(shí)踐教程1第二版完整版ppt全套教學(xué)教程最全電子課件整本書(shū)ppt
- 大數(shù)據(jù)與會(huì)計(jì)-說(shuō)專(zhuān)業(yè)
- 產(chǎn)前篩查實(shí)驗(yàn)室標(biāo)準(zhǔn)操作程序文件
- T∕TAF 090-2021 移動(dòng)終端適老化技術(shù)要求
評(píng)論
0/150
提交評(píng)論