版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、會計學(xué)1等差等比數(shù)列的性質(zhì)及綜合等差等比數(shù)列的性質(zhì)及綜合(zngh)應(yīng)用應(yīng)用第一頁,共40頁。 掌握等差、等比數(shù)列的基本性質(zhì):如()“成對”和或積相等問題;()等差數(shù)列求和S2n-1與中項an;能靈活運(yùn)用性質(zhì)解決(jiju)有關(guān)問題.如分組求和技巧、整體運(yùn)算.第1頁/共40頁第二頁,共40頁。1.在等差數(shù)列an與等比數(shù)列bn中,下列(xili)結(jié)論正確的是( )CA.a1+a9=a10,b1b9=b10B.a1+a9=a3+a6,b1+b9=b3+b6C.a1+a9=a4+a6,b1b9=b4b6D.a1+a9=2a5,b1b9=2b5 當(dāng)m+n=p+q時,等差數(shù)列(dn ch sh li)中
2、有am+an=ap+aq,等比數(shù)列中有bmbn=bpbq.第2頁/共40頁第三頁,共40頁。2.已知等比數(shù)列(dn b sh li)an中,有a3a11=4a7,數(shù)列bn是等差數(shù)列,且b7=a7,則b5+b9等于( )CA.2 B.4 C.8 D.16 因為(yn wi)a3a11=a72=4a7,因為(yn wi)a70,所以a7=4,所以b7=4. 因為(yn wi)bn為等差數(shù)列,所以b5+b9=2b7=8,故選C.第3頁/共40頁第四頁,共40頁。3.命題:若數(shù)列an的前n項和Sn=an+b(a1),則數(shù)列an是等比數(shù)列; 命題 :若數(shù)列an的前n項和Sn=an2+bn+c(a0),則
3、數(shù)列an是等差數(shù)列(dn ch sh li); 命題 :若數(shù)列an的前n項和Sn=na-n,則數(shù)列an既是等差數(shù)列(dn ch sh li),又是等比數(shù)列.上述三個命題中,真命題有( )AA.0個 B.1個 C.2個 D.3個第4頁/共40頁第五頁,共40頁。 由命題得,a1=a+b,當(dāng)n時,an=Sn-Sn-1=(a-1)an-1.若an是等比,數(shù)列則 =a即 =a,所以只有(zhyu)當(dāng)b=-1且a0時,此數(shù)列才是等比數(shù)列. 由命題得,a1=a+b+c,當(dāng)n時,an=Sn-Sn-1=2na+b-a.若an是等差數(shù)列,則a2-a1=2a,即2a-c=2a,所以只有(zhyu)當(dāng)c=0時,數(shù)列
4、an才是等差數(shù)列. 由命題得,a1=a-1,當(dāng)n時,an=Sn-Sn-1=a-1,顯然an是一個常數(shù)列,即公差為0的等差數(shù)列,因此只有(zhyu)當(dāng)a-10,即a時,數(shù)列an才又是等比數(shù)列.21aa(1)a aab第5頁/共40頁第六頁,共40頁。4.(1)等差數(shù)列(dn ch sh li)的前n項的和為54,前2n項的和為60,則前3n項的和為 ; (2)等比數(shù)列的前n項和為54,前2n項的和為60,則前3n項的和為 .186023 (1)由等差數(shù)列(dn ch sh li)性質(zhì),Sn,S2n-Sn,S3n-S2n成等差數(shù)列(dn ch sh li),則2(S2n-Sn)=Sn+S3n-S2
5、n,解得S3n=18.(2)由等比數(shù)列性質(zhì),Sn,S2n-Sn,S3n-S2n成等比數(shù)列,則(S2n-Sn)2=Sn(S3n-S2n),解得S3n=60 .23第6頁/共40頁第七頁,共40頁。5.已知數(shù)列an、bn分別(fnbi)為等差、等比數(shù)列,且a1=b10,a3=b3,b1b3,則一定有a2 b2,a5 b5(填“”“0,b30,又b1b3,a2= = =|b2|,故a2b2;同理,a5=2a3-a1 =2b3-b1 ,b5= ,所以b5-a5= -(2b3-b1)= = 0,即b5a5.132aa132bb1 3bb231bb231bb22331112bb bbb2311()bbb第
6、7頁/共40頁第八頁,共40頁。(方法二)通項與函數(shù)關(guān)系(gun x).因為an=dn+(a1-d)為關(guān)于n的一次函數(shù),bn=a1qn-1= qn為關(guān)于n的類指數(shù)函數(shù).當(dāng)d0,如圖1;當(dāng)db2,a50d0,則lgan是等差數(shù)列.(5)在等差數(shù)列an中,當(dāng)項數(shù)為偶數(shù)(u sh)2n時;S偶-S奇= ;項數(shù)為奇數(shù)2n-1時;S奇-S偶= ,S2n-1=(2n-1)an(這里的an即為中間項);S奇 S偶=n (n-1).am+an=ap+aqndannaa第10頁/共40頁第十一頁,共40頁。(6)若等差數(shù)列an、bn的前n項和分別為An、Bn,且 =f(n),則 = = =f(2n-1).(7)
7、“首正”的遞減等差數(shù)列中,前n項和的最大值是所有 之和;“首負(fù)”的遞增等差數(shù)列中,前n項和的最小值是所有 之和.(8)如果兩個(lin )等差數(shù)列有公共項,那么由它們的公共項順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù).nnABnnab(21)(21)nnnanb2121nnAB非負(fù)項非正項第11頁/共40頁第十二頁,共40頁。2.等比數(shù)列的性質(zhì)(1)當(dāng)m+n=p+q時,則有 ,特別地,當(dāng)m+n=2p時,則有aman=ap2.(2)若an是等比數(shù)列,則kan成等比數(shù)列;若an、bn成等比數(shù)列,則anbn、 成等比數(shù)列;若an是等比數(shù)列,且公比(n b)q-1,
8、則數(shù)列Sn,S2n-Sn,S3n-S2n,也是 數(shù)列.當(dāng)q=-1,且n為偶數(shù)時,數(shù)列Sn,S2n-Sn,S3n-S2n,是常數(shù)數(shù)列0,它不是等比數(shù)列.aman=apaqnnab等比第12頁/共40頁第十三頁,共40頁。(3)若a10,q1,則an為 數(shù)列;若a11,則an為 數(shù)列;若a10,0q1,則an為遞減數(shù)列;若a10,0q1,則an為遞增數(shù)列;若q0,n=1,2,,且a5a2n-5=22n(n3),則當(dāng)n1時,log2a1+log2a3+log2a2n-1=( )A. n(2n-1) B. (n+1)2C. n2 D. (n-1)2 (1)因為(yn wi)1+8+15=2,且n成等差
9、數(shù)列,則1+15=28,故8= .于是tan(2+14)=tan28=tan = .23433C第16頁/共40頁第十七頁,共40頁。(2)因為(yn wi)a5a2n-5=22n(n3),且an成等比數(shù)列,則a1a2n-1=a3a2n-3=a5a2n-5=22n=an2.令S=log2a1+log2a3+log2a2n-1,(可直接計算)則S=log2a2n-1+log2a3+log2a1,所以2S=log2(a1a2n-1)(a3a2n-3)(a2n-3a3)(a2n-1a1) =log2(22n)n,所以2S=2nn,所以 S=n2.第17頁/共40頁第十八頁,共40頁。 本題是等差、等
10、比的求值題,難點是找條件和目標(biāo)之間的對應(yīng)關(guān)系.解題時,根據(jù)(gnj)等差、等比數(shù)列的“成對下標(biāo)和”性質(zhì),列出方程或多個恒等式是解題的關(guān)鍵.一般的,對于涉及等差、等比數(shù)列的通項公式的條件求值題,合理利用通項或相關(guān)性質(zhì)進(jìn)行化歸是基本方法.第18頁/共40頁第十九頁,共40頁。 (2010湖北省模擬)設(shè)數(shù)列(shli)an、bn都是正項等比數(shù)列(shli),Sn、Tn分別為數(shù)列(shli)lgan與lgbn的前n項和,且 = ,則logb5a5= .nnST21nn 由題知, = = = =logb5a5 logb5a5= .99ST129129lg()lg()a aab bb9595lglgab5
11、5lglgab919919第19頁/共40頁第二十頁,共40頁。例2 (1)等差數(shù)列(dn ch sh li)an中,a9+a10=a,a19+a20=b,求a99+a100.(2)在等比數(shù)列an中,若a1a2a3a4=1,a13a14a15a16=8,求a41a42a43a44.第20頁/共40頁第二十一頁,共40頁。 (1)將相鄰兩項和a1+a2,a3+a4,a5+a6,a99+a100分別記為b1,b2,b3,b50,可知bn成等差數(shù)列(dn ch sh li).此數(shù)列的公差d= = .a99+a100=b50=b5+45d=a+ 45=9b-8a.105105bb5ab5ab5ab5a
12、b第21頁/共40頁第二十二頁,共40頁。(2)(方法(fngf)一)a1a2a3a4=a1a1qa1q2a1q3 =a14q6=1. a13a14a15a16=a1q12a1q13a1q14a1q15 =a14q54=8. 得, =q48=8 q16=2.又a41a42a43a44a1q40a1q41a1q42a1q43=a14q166=a14q6q160=(a14q6)(q16)10=1210=1024.4541461aqaq第22頁/共40頁第二十三頁,共40頁。(方法二)由性質(zhì)可知(k zh),依次項的積為等比數(shù)列,設(shè)公比為q,T1=a1a2a3a4=1,T4=a13a14a15a16
13、=8,所以T4=T1q3=1q3=8 q=2,所以T11a41a42a43a44=T1q10=1024. 巧用性質(zhì),減少運(yùn)算,在有關(guān)等差、等比數(shù)列的計算(j sun)中非常重要.如()(2)小題巧用性質(zhì),構(gòu)造一個新的等差或等比數(shù)列求解.第23頁/共40頁第二十四頁,共40頁。例3 已知等比數(shù)列xn的各項為不等于的正數(shù),數(shù)列yn滿足ynlogxna=2(a0,a1),設(shè)y3=18,y6=12. (1)求數(shù)列yn的前多少項和最大,最大值為多少? (2)試判斷(pndun)是否存在自然數(shù)M,使當(dāng)nM時,xn1恒成立?若存在,求出相應(yīng)的M值;若不存在,請說明理由; (3)令an=logxnxn+1(n
14、13,nN*),試判斷(pndun)數(shù)列an的增減性?第24頁/共40頁第二十五頁,共40頁。 (1)由已知得,yn=2logaxn.設(shè)等比數(shù)列xn的公比(n b)為q(q),由yn+1-yn=2(logaxn+1-logaxn)=2loga =2logaq,得yn為等差數(shù)列,設(shè)公差為d.因為y3=18,y6=12,所以d=-2,所以yn=y3+(n-3)d=24-2n. yk+10 yk0所以前11項與前12項和為最大,其和為132.1nnxx設(shè)前k項和為最大,則11k12,y12=0,nnxx1第25頁/共40頁第二十六頁,共40頁。(2)xn=a12-n,nN*.若xn1,則a12-n1
15、.當(dāng)a1時,n12,顯然不成立;當(dāng)0a12,所以存在M=12,13,14,當(dāng)nM時,xn1.(3)an=logxnxn+1=loga12-na12-(n+1)= .因為an+1-an= - = ,又n13,所以an+113時,數(shù)列an為遞減數(shù)列.1112nn1011nn1112nn1(11)(12)nn 本小題主要考查等差、等比數(shù)列的有關(guān)知識,考查運(yùn)用方程、分類討論等思想方法進(jìn)行分析、探索及解決問題的能力.第26頁/共40頁第二十七頁,共40頁。 在數(shù)列an中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n2,q0). (1)設(shè)bn=an+1-an(nN*),證明:bn是等比數(shù)
16、列(dn b sh li); (2)求數(shù)列an的通項公式; (3)若a3是a6與a9的等差中項,求q的值,并證明:對任意的nN*,an是an+3與an+6的等差中項.第27頁/共40頁第二十八頁,共40頁。 (1)證明:由題設(shè)an+1=(1+q)an-qan-1(n2), 得an+1-an=q(an-an-1),即bn=qbn-1,n2.又b1=a2-a1=1,q0,所以bn是首項為1,公比(n b)為q的等比數(shù)列.第28頁/共40頁第二十九頁,共40頁。(2)由(1)知,a2-a1=1,a3-a2=q,an-an-1=qn-2(n).將以上各式相加,得an-a1=1+q+qn-2(n2).
17、1+ (q1) n (q=1).上式對n=1顯然(xinrn)成立.所以(suy)當(dāng)n2時, an=111nqq第29頁/共40頁第三十頁,共40頁。(3)由(2)知,當(dāng)q=1時,顯然a3不是a6與a9的等差中項,故q1.由a3-a6=a9-a3,可得q5-q2=q2-q8,由q0,得q3-1=1-q6, 整理(zhngl)得(q3)2+q3-2=0,解得q3=-2或q3=1(舍去).于是q=- .另一方面,an-an+3= = (q3-1),an+6-an= = (1-q6).由可得an-an+3=an+6-an(nN*).所以對任意的nN*,an是an+3與an+6的等差中項.23211n
18、nqqq11nqq151nnqqq11nqq第30頁/共40頁第三十一頁,共40頁。(2009江蘇卷)設(shè)an是公比為q的等比數(shù)列(dn b sh li),|q|1,令bn=an+1(n=1,2,).若數(shù)列bn有連續(xù)四項在集合-53,-23,19,37,82中,則6q= .-9第31頁/共40頁第三十二頁,共40頁。 因為數(shù)列bn有連續(xù)四項在集合-53,-23,19,37,82中,又an=bn+1,所以數(shù)列an有連續(xù)四項在集合-54,-24,18,36,81中,且必有正項、負(fù)項;又|q|1,所以q-1,因此ak,ak+1,ak+2,ak+3(kN*)正負(fù)相間,且|ak|,|ak+1|,|ak+2
19、|,|ak+3|單調(diào)遞增,故等比數(shù)列四項只能為-24,36,-54,81.此時(c sh),公比為q=- ,6q=-9.32第32頁/共40頁第三十三頁,共40頁。學(xué)例1 (2009安徽卷)已知an為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99.以Sn表示(biosh)an的前n項和,則使得Sn達(dá)到最大值的n是( )BA. 21 B. 20C. 19 D. 18第33頁/共40頁第三十四頁,共40頁。 由a1+a3+a5=105,得3a3=105,即a3=35. 由a2+a4+a6=99,得3a4=99,即a4=33. 則由-得d=-2,所以(suy)an=a4+(n-4)(-2)=41-2n. an0 an+1 20.5,又nN*,故n=20.令第34頁/共40頁第三十五頁,共40頁。 (2009江西卷)各項均為正數(shù)的數(shù)列an,a1=a,a2=b,且對滿足m+n=p+q的正整數(shù)m,n,p,q都有 = . (1)當(dāng)a= ,b= 時,求通項an; (2)證明:對任意a,存在與a有關(guān)的常數(shù)(chngsh),使得對于每個正整數(shù)n,都有 an.學(xué)例2(1)(1)mnmnaaaa(1)(1)pqpqaaaa12451第35頁/共40頁第三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度承包山地造林種植與生態(tài)移民安置合同范本3篇
- 二零二四年度SAPHelpPortal用戶體驗優(yōu)化合同-提升系統(tǒng)交互效率2篇
- 2024物業(yè)公司承擔(dān)住宅小區(qū)垃圾清運(yùn)的合同
- 2025年度留置車輛處置借款合同4篇
- 2025年grc構(gòu)件生產(chǎn)線投資建設(shè)與運(yùn)營合同3篇
- 年度PAPTFE競爭策略分析報告
- 年度童書產(chǎn)業(yè)分析報告
- 2024-2025學(xué)年新教材高中語文基礎(chǔ)過關(guān)訓(xùn)練15諫逐客書含解析部編版必修下冊
- 二零二五版白糖倉儲物流服務(wù)合同范本2篇
- 2025年理療項目合作協(xié)議范本:特色理療項目合作框架協(xié)議3篇
- 骨科手術(shù)后患者營養(yǎng)情況及營養(yǎng)不良的原因分析,骨傷科論文
- GB/T 24474.1-2020乘運(yùn)質(zhì)量測量第1部分:電梯
- GB/T 12684-2006工業(yè)硼化物分析方法
- 定崗定編定員實施方案(一)
- 高血壓患者用藥的注意事項講義課件
- 特種作業(yè)安全監(jiān)護(hù)人員培訓(xùn)課件
- (完整)第15章-合成生物學(xué)ppt
- 太平洋戰(zhàn)爭課件
- 封條模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖漿
- 貨代操作流程及規(guī)范
評論
0/150
提交評論