版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第四章信息率失真函數(shù)4.3.1 連續(xù)信源的信息率失真函數(shù)的參量表達式4.3.2 高斯信源的信息率失真函數(shù)4.3連續(xù)信源的信息率失真函數(shù)第四章信息率失真函數(shù)條件信源XR=(,)信源X的概率密度函數(shù)為p(x)信道的傳遞概率密度函數(shù)為p(y /x)信宿YR=(,)信宿Y的概率密度函數(shù)為p(y)X和Y之間的失真度d(x,y)04.3.1連續(xù)信源的信息率失真函數(shù)的參量表達式4.3連續(xù)信源的信息率失真函數(shù)D = p(xy)d(x, y)dxdy=第四章信息率失真函數(shù)平均失真度為 p(x) p( y / x)d(x, y)dxdy平均互信息為4.3.1連續(xù)信源的信息率失真函數(shù)的參量表達式4.3連續(xù)信源的信息
2、率失真函數(shù)222-( ; )( ) ( | )log( | )( )log( )( | )( ) ( | )log( )( )=( ) ( | )dx( )dx=1( )dy=1( | )dy=1I X Yp x p y xp y x dxdyp yp y dyp y xp x p y xdxdyp yp yp x p y xp xp yp y x= 其中D(S ) = ( x) p( x) p( y)e d ( x, y)dxdy R(S ) = SD(S ) + p( x) log 2 ( x)dx同樣可以證明S是R( D)的斜率,S =第四章信息率失真函數(shù)困難,用迭代算法計算機求解,只在
3、特殊情況下求解比較簡單。PD為滿足保真度準則 D D 的所有試驗信道集合。信息率失真函數(shù)為R( D) = inf I ( X ; Y ) “inf ”是指下確界p ( y / x )PD相當于離散信源中求極小值,嚴格地說,連續(xù)集合未必存在極小值,但是一定存在下確界。4.3.1連續(xù)信源的信息率失真函數(shù)的參量表達式4.3連續(xù)信源的信息率失真函數(shù)dRdD一般情況,在失真度積分存在情況下, R(D) 的解存在,直接求解R(D)函數(shù)的參量表達式: Sd ( x , y )m = xp( x)dx = ( x m)2p( x)dx(1) 高斯信源特性及失真度設(shè)連續(xù)信源的概率密度為正態(tài)分布函數(shù)數(shù)學期望為方差
4、為失真度為d(x,y)=(xy)2,即把均方誤差作為失真,表明通信系統(tǒng)中輸入輸出之間誤差越大,失真越嚴重,嚴重程度隨誤差增大呈平方增長。 24.3.2 高斯信源的信息率失真函數(shù)22()221( )2xmp xe=第四章信息率失真函數(shù)4.3.2 高斯信源的信息率失真函數(shù)(2) 曲線圖說明曲線如圖4.3.2。當信源均值不為0時,仍有這個結(jié)果,因為高斯信源的熵只與隨機變量的方差有關(guān),與均值無關(guān)。4.3連續(xù)信源的信息率失真函數(shù)22221log( )20DDR DD=第四章信息率失真函數(shù)4.3.2 高斯信源的信息率失真函數(shù)當D=2時,R(D)=0 :這就是說,如果允許失真(均方誤差)等于信源的方差,只需
5、用確知的均值m來表示信源的輸出,不需要傳送信源的任何實際輸出;當D=0時,R(D):這點說明在連續(xù)信源情況下,要毫無失真地傳送信源的輸出是不可能的。即要毫無失真地傳送信源的輸出必須要求信道具有無限大的容量;4.3連續(xù)信源的信息率失真函數(shù)第四章信息率失真函數(shù)4.3.2 高斯信源的信息率失真函數(shù)當0D0,當信息率RR(D) ,只要信源序列長度L足夠長,一定存在一種編碼方式C,使譯碼后的平均失真度 D(C ) D + ;反之,若RR(D),則無論用什么編碼方式,必有D(C ) D ,即譯碼平均失真必大于允許失真。上述定理也稱為限失真信源編碼定理。該定理可推廣到連續(xù)平穩(wěn)無記憶信源的情況。信息率失真函數(shù)
6、也是一個界限。只要信息率大于這個界限,譯碼失真就可限制在給定的范圍內(nèi)。即通信的過程中雖然有失真,但仍能滿足要求,否則就不能滿足要求。第四章信息率失真函數(shù)上述定理又稱為限失真信源編碼定理或Shannon第三定理。也可以將該定理作如下的敘述:若R(D)為離散無記憶信源的信息率失真函數(shù),D為允許的失真度,則只要實際的信息率R滿足R R(D),就存在一種編碼方法,使其譯碼的平均失真度 D D + , 其中 為任意小的正數(shù);反之,若R RR(D)的情況下,可以通過合理運用信源編碼和信道編碼充分提高通信系統(tǒng)的有效性和可靠性,實現(xiàn)通信系統(tǒng)的最優(yōu)化。4.4 保真度準則下的信源編碼定理RR(D)R0,當信息率
7、RR(D) ,只要信源序列長度 L 足夠長,一定存在一種編碼方式 C,使譯碼后的;反之,若 RR(D),則無論用,即譯碼平均失真必大于允許失真。信息率失真函數(shù)也是一個界限。只要信息率大于這個界限,譯碼失真就可限制在給定的范圍內(nèi)。即通信的過程中雖然有失真,但仍能滿足要求,否則就不能滿足要求。第四章信息率失真函數(shù)什么編碼方式,必有D (C ) D平均失真度D (C ) D + 復習第四章信息率失真函數(shù)研究信道編碼和率失真函數(shù)的意義研究信道容量的意義:在實際應用中,研究信道容量是為了解決在已知信道中傳送最大信息率問題。目的是充分利用已給信道,使傳輸?shù)男畔⒘孔畲蠖l(fā)生錯誤的概率任意小,以提高通信的可靠性。這就是信道編碼問題。研究信息率失真函數(shù)的意義:研究信息率失真函數(shù)是為了解決在已知信源和允許失真度D 的條件下,使信源必須傳送給信宿的信息
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國導軌防護罩行業(yè)投資前景及策略咨詢研究報告
- 檔案館裝修合同變更審批
- 餐飲業(yè)臨時租賃合同示例
- 情感教育策略研究在小學教育的應用案例
- 教育領(lǐng)域中實驗室安全的現(xiàn)狀及改進措施
- 新時代下學校生命教育的創(chuàng)新實踐與挑戰(zhàn)分析
- 探索農(nóng)業(yè)廢棄物在科技教育中的應用
- 交通運輸調(diào)度員實習報告范文
- 高鐵建設(shè)施工人員配置方案
- 2024年度江西省公共營養(yǎng)師之三級營養(yǎng)師題庫練習試卷B卷附答案
- 英語名著閱讀老人與海教學課件(the-old-man-and-the-sea-)
- 學校食品安全知識培訓課件
- 全國醫(yī)學博士英語統(tǒng)一考試詞匯表(10000詞全) - 打印版
- 最新《會計職業(yè)道德》課件
- DB64∕T 1776-2021 水土保持生態(tài)監(jiān)測站點建設(shè)與監(jiān)測技術(shù)規(guī)范
- ?中醫(yī)院醫(yī)院等級復評實施方案
- 數(shù)學-九宮數(shù)獨100題(附答案)
- 理正深基坑之鋼板樁受力計算
- 學校年級組管理經(jīng)驗
- 10KV高壓環(huán)網(wǎng)柜(交接)試驗
- 未來水電工程建設(shè)抽水蓄能電站BIM項目解決方案
評論
0/150
提交評論