版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為( )AB
2、CD12已知向量,則與共線的單位向量為( )ABC或D或3某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費用比年的就醫(yī)費用增加了元,則該人年的儲畜費用為( )A元B元C元D元4設平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的( )A充分不必要條件B必要不充分條件C充要條件D即不充分不必要條件5閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:紅樓夢、三國演義、水滸傳及西游記,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有( )
3、A120種B240種C480種D600種6若點是角的終邊上一點,則( )ABCD7復數(shù)的共軛復數(shù)在復平面內(nèi)所對應的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限8已知數(shù)列,是首項為8,公比為得等比數(shù)列,則等于( )A64B32C2D49記的最大值和最小值分別為和若平面向量、,滿足,則( )ABCD10如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近( )ABCD11已知復數(shù)滿足,則( )ABCD12已知為等差數(shù)列,若,則( )A1B2C3D6二、填空題:本題共4小題,每小題5分,共20分。13已
4、知三棱錐中,且二面角的大小為,則三棱錐外接球的表面積為_.14正項等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時的值為_15在中,若,則 _16函數(shù)在區(qū)間內(nèi)有且僅有兩個零點,則實數(shù)的取值范圍是_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,/,.(1)證明:/平面BCE. (2)設平面ABF與平面CDF所成的二面角為,求.18(12分)已知函數(shù).(1)討論的單調(diào)性;(2)函數(shù),若對于,使得成立,求的取值范圍.19(12分)在中,是邊上一點,且,.(1)求的長;(2)若的面積為14,求
5、的長.20(12分)某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季進了160盒該產(chǎn)品,以(單位:盒,)表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤.(1)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開學季利潤不少于4800元的概率.21(12分)已知直線與拋物線交于兩點.(1)當點的橫坐標之和為4時,求直線的斜率;(2)已知點,直線過點,記
6、直線的斜率分別為,當取最大值時,求直線的方程.22(10分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為. (1)求直線l的普通方程和圓C的直角坐標方程;(2)直線l與圓C交于A,B兩點,點P(2,1),求|PA|PB|的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】試題分析:設,由題意,顯然時不符合題意,故,則,可得:,當且僅當時取等號,故選C考點:1拋物線的簡單幾何性質(zhì);2均值不等式【方法點晴】本題主要考查的是向量在解析幾何中的
7、應用及拋物線標準方程方程,均值不等式的靈活運用,屬于中檔題解題時一定要注意分析條件,根據(jù)條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題2D【解析】根據(jù)題意得,設與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,則,所以,設與共線的單位向量為,則,解得 或所以與共線的單位向量為或.故選:D.【點睛】本題考查向量的坐標運算以及共線定理和單位向量的定義.3A【解析】根據(jù) 2018年的家庭總收人為元,且就醫(yī)費用占 得到就醫(yī)費用,再根據(jù)年的就醫(yī)費用比年的就醫(yī)費用增加了元,得到年的就醫(yī)費用,然后由年的就醫(yī)費用占總收
8、人,得到2019年的家庭總收人再根據(jù)儲畜費用占總收人求解.【詳解】因為2018年的家庭總收人為元,且就醫(yī)費用占 所以就醫(yī)費用因為年的就醫(yī)費用比年的就醫(yī)費用增加了元,所以年的就醫(yī)費用元,而年的就醫(yī)費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【點睛】本題主要考查統(tǒng)計中的折線圖和條形圖的應用,還考查了建模解模的能力,屬于基礎題.4A【解析】試題分析:, bm又直線a在平面內(nèi),所以ab,但直線不一定相交,所以“”是“ab”的充分不必要條件,故選A.考點:充分條件、必要條件.5B【解析】首先將五天進行分組,再對名著進行分配,根據(jù)分步乘法計數(shù)原理求得結(jié)果.【詳解】將周一
9、至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數(shù)原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數(shù)原理的應用,易錯點是忽略分組中涉及到的平均分組問題.6A【解析】根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據(jù)三角函數(shù)的定義,可得,則,故選A.【點睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7D【解析】由
10、復數(shù)除法運算求出,再寫出其共軛復數(shù),得共軛復數(shù)對應點的坐標得結(jié)論【詳解】,對應點為,在第四象限故選:D.【點睛】本題考查復數(shù)的除法運算,考查共軛復數(shù)的概念,考查復數(shù)的幾何意義掌握復數(shù)的運算法則是解題關鍵8A【解析】根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,故,.故選:.【點睛】本題考查了數(shù)列值的計算,意在考查學生的計算能力.9A【解析】設為、的夾角,根據(jù)題意求得,然后建立平面直角坐標系,設,根據(jù)平面向量數(shù)量積的坐標運算得出點的軌跡方程,將和轉(zhuǎn)化為圓上的點到定點距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,建立平面直角坐標系,設,由,可得,即,化簡得點的軌跡方程為,則,則轉(zhuǎn)化為
11、圓上的點與點的距離,轉(zhuǎn)化為圓上的點與點的距離,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉(zhuǎn)化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應用,屬于中等題.10A【解析】結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項和公式和對數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點睛】本題考查與“楊輝三角”有關的規(guī)律求解問題,邏輯推理,等比數(shù)列前項和公式應用,
12、屬于中檔題11A【解析】根據(jù)復數(shù)的運算法則,可得,然后利用復數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點睛】本題主要考查復數(shù)的運算,考驗計算,屬基礎題.12B【解析】利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出【詳解】an為等差數(shù)列,,,解得10,d3,+4d10+111故選:B【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,是基礎題二、填空題:本題共4小題,每小題5分,共20分。13【解析】設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,將的長度求出或用球半
13、徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,如圖所示因為,所以,又二面角的大小為,則,所以,設外接球半徑為R,則,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數(shù)形結(jié)合,建立關于球的半徑的方程,本題計算量較大,是一道難題.142【解析】先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【點睛】本題考查等比數(shù)列、等差數(shù)列的有關性質(zhì)以及
14、等比數(shù)列求積、求最值的有關運算,中檔題.15【解析】分析:首先設出相應的直角邊長,利用余弦勾股定理得到相應的斜邊長,之后應用余弦定理得到直角邊長之間的關系,從而應用正切函數(shù)的定義,對邊比臨邊,求得對應角的正切值,即可得結(jié)果.詳解:根據(jù)題意,設,則,根據(jù), 得,由勾股定理可得,根據(jù)余弦定理可得,化簡整理得,即,解得,所以,故答案是.點睛:該題考查的是有關解三角形的問題,在解題的過程中,注意分析要求對應角的正切值,需要求誰,而題中所給的條件與對應的結(jié)果之間有什么樣的連線,設出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應的等量關系,求得最后的結(jié)果.16【解析】對函數(shù)零點問題等價轉(zhuǎn)化,分離參數(shù)
15、討論交點個數(shù),數(shù)形結(jié)合求解.【詳解】由題:函數(shù)在區(qū)間內(nèi)有且僅有兩個零點,等價于函數(shù)恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數(shù)零點問題,根據(jù)函數(shù)零點個數(shù)求參數(shù)的取值范圍,關鍵在于對函數(shù)零點問題恰當變形,等價轉(zhuǎn)化,數(shù)形結(jié)合求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)定理,可得DE/BF,然后根據(jù)勾股定理計算可得BFDE,最后利用線面平行的判定定理,可得結(jié)果.(2)利用建系的方法,可得平面ABF的一個法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關系,可得結(jié)果.
16、【詳解】(1)因為DE平面ABCD,所以DEAD,因為AD4,AE5,DE3,同理BF3,又DE平面ABCD,BF平面ABCD,所以DE/BF,又BFDE,所以平行四邊形BEDF,故DF/BE,因為BE平面BCE,DF平面BCE所以DF/平面BCE;(2)建立如圖空間直角坐標系,則D(0,0,0),A(4,0,0),C(0,4,0),F(xiàn)(4,3,3), 設平面CDF的法向量為,由,令x3,得,易知平面ABF的一個法向量為,所以,故.【點睛】本題考查線面平行的判定以及利用建系方法解決面面角問題,屬基礎題.18(1)當時,在上增;當時,在上減,在上增(2)【解析】(1)求出導函數(shù),分類討論確定的正
17、負,確定單調(diào)區(qū)間;(2)題意說明,利用導數(shù)求出的最小值,由(1)可得的最小值,從而得出結(jié)論【詳解】解:(1)定義域為當時,即在上增;當時,即得得綜上所述,當時,在上增;當時,在上減,在上增(2)由題在上增由(1)當時,在上增,所以此時無最小值;當時,在上減,在上增,即,解得綜上【點睛】本題考查用導數(shù)求函數(shù)的單調(diào)區(qū)間,考查不等式恒成立問題,解題關鍵是掌握轉(zhuǎn)化與化歸思想,本題恒成立問題轉(zhuǎn)化為,求出兩函數(shù)的最小值后可得結(jié)論19(1)1;(2)5.【解析】(1)由同角三角函數(shù)關系求得,再由兩角差的正弦公式求得,最后由正弦定理構(gòu)建方程,求得答案.(2)在中,由正弦定理構(gòu)建方程求得AB,再由任意三角形的面
18、積公式構(gòu)建方程求得BC,最后由余弦定理構(gòu)建方程求得AC.【詳解】(1)據(jù)題意,且,所以.所以.在中,據(jù)正弦定理可知,所以.(2)在中,據(jù)正弦定理可知,所以.因為的面積為14,所以,即,得.在中,據(jù)余弦定理可知,所以.【點睛】本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數(shù)關系和兩角差的正弦公式化簡求值,屬于簡單題.20(1),眾數(shù)為150;(2) ;(3)【解析】(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求出這個開學季內(nèi)市場需求量的眾數(shù)和平均數(shù);(2)由已知條件推導出當時,當時,由此能將表示為的函數(shù);(3)利用頻率分布直方圖能求出利潤不少于4800元的概率【詳解】(1)由直方圖可估計需求量的眾數(shù)為150 ,由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:估計需求量的平均數(shù)為:(2)當時,當時, (3)由(2)知 當時,當時,得開學季利潤不少于4800元的需求量為由頻率分布直方圖可所求概率【點睛】本題考查頻率分布直方圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子設備交易合同案例
- 悔過自責重建信任
- 珍愛和平和諧相處
- 香蕉采購合同示例
- 版企業(yè)借款合同模式
- 地毯招標廢標原因文件
- 建筑施工土方填筑招標
- 戶外垃圾桶設計招標
- 電子招投標操作技巧
- 大樓租賃合同書
- 山東省青島市2023-2024學年七年級上學期期末考試數(shù)學試題(含答案)
- DB34∕T 4504-2023 中醫(yī)治未病科設施配置指南
- 國家QC小組成果案例(攻關型)
- GB/T 44679-2024叉車禁用與報廢技術規(guī)范
- 【人教版】《勞動教育》五下 勞動項目八《制作校園提示牌》課件
- 醫(yī)學教材單孔腹腔鏡手術經(jīng)驗分享
- 涉外法律顧問服務合同范本
- 云南省昆明市五華區(qū)四2024年數(shù)學四上期末監(jiān)測試題含解析
- 部編版小學四年級語文上冊第25課《王戎不取道旁李》課件(共126張課件)
- 中學地理七年級《世界的氣候類型》說課稿
- 陪診免責協(xié)議書范本電子版
評論
0/150
提交評論