版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022中考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分在每小題給出的四個選項中,只有一項是符合題目要求的)1將一副直角三角尺如圖放置,若AOD=20,則BOC的大小為( )A140B160C170D1502如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為( )
2、ABCD3下列方程有實數(shù)根的是( )ABCx+2x1=0D4某校有35名同學參加眉山市的三蘇文化知識競賽,預賽分數(shù)各不相同,取前18名同學參加決賽. 其中一名同學知道自己的分數(shù)后,要判斷自己能否進入決賽,只需要知道這35名同學分數(shù)的( ).A眾數(shù)B中位數(shù)C平均數(shù)D方差5在數(shù)軸上表示不等式2(1x)4的解集,正確的是()ABCD6如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么AOB的度數(shù)是()A90B60C45D307如圖,在ABC中,ABC=90,AB=8,BC=1若DE是ABC的中位線,延長DE交ABC的
3、外角ACM的平分線于點F,則線段DF的長為( )A7B8C9D108在“大家跳起來”的鄉(xiāng)村學校舞蹈比賽中,某校10名學生參賽成績統(tǒng)計如圖所示對于這10名學生的參賽成績,下列說法中錯誤的是( )A眾數(shù)是90B中位數(shù)是90C平均數(shù)是90D極差是159鄭州地鐵號線火車站站口分布如圖所示,有A,B,C,D,E五個進出口,小明要從這里乘坐地鐵去新鄭機場,回來后仍從這里出站,則他恰好選擇從同一個口進出的概率是()ABCD10如圖,將ABC沿BC邊上的中線AD平移到ABC的位置,已知ABC的面積為9,陰影部分三角形的面積為1若AA=1,則AD等于()A2B3CD11如圖,ABC的三個頂點分別為A(1,2)、
4、B(4,2)、C(4,4)若反比例函數(shù)y在第一象限內(nèi)的圖象與ABC有交點,則k的取值范圍是()A1k4B2k8C2k16D8k1612已知反比例函數(shù)y=-2x,下列結論不正確的是()A圖象必經(jīng)過點(1,2)By隨x的增大而增大C圖象在第二、四象限內(nèi)D若x1,則0y-2二、填空題:(本大題共6個小題,每小題4分,共24分)13定義一種新運算:x*y=,如2*1=3,則(4*2)*(1)=_14如果,那么代數(shù)式的值是_15圖,A,B是反比例函數(shù)y=圖象上的兩點,過點A作ACy軸,垂足為C,AC交OB于點D若D為OB的中點,AOD的面積為3,則k的值為_16若函數(shù)y=m-2x的圖象在其所在的每一象限
5、內(nèi),函數(shù)值y隨自變量x的增大而減小,則m的取值范圍是_179的算術平方根是 18經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉或向右轉如果這三種可能性大小相同,現(xiàn)有兩輛汽車先后經(jīng)過這個十字路口,則至少有一輛汽車向左轉的概率是_三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟19(6分) 如圖,在平面直角坐標系中,拋物線yx2+bx+c(a0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(1,0),拋物線的對稱軸直線x交x軸于點D(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當點E運動到什么
6、位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標;(3)在(2)的條件下,將線段FG繞點G順時針旋轉一個角(090),在旋轉過程中,設線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與ABC相似?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由20(6分)如圖,在RtABC中,ACB=90,以AC為直徑的O與AB邊交于點D,過點D作O的切線交BC于點E求證:BE=EC填空:若B=30,AC=2,則DE=_;當B=_度時,以O,D,E,C為頂點的四邊形是正方形21(6分)如圖,在ABC中,AB=AC,以AB為直徑的O與BC交于
7、點D,過點D作ABD=ADE,交AC于點E(1)求證:DE為O的切線(2)若O的半徑為,AD=,求CE的長22(8分)先化簡,后求值:a2a4a8a2+(a3)2,其中a=123(8分)如圖,矩形ABCD中,AB4,AD5,E為BC上一點,BECE32,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PFBC交直線AE于點F.(1)線段AE_;(2)設點P的運動時間為t(s),EF的長度為y,求y關于t的函數(shù)關系式,并寫出t的取值范圍;(3)當t為何值時,以F為圓心的F恰好與直線AB、BC都相切?并求此時F的半徑24(10分)如圖,已知一次函數(shù)的圖象與反比例
8、函數(shù)的圖象交于點,且與軸交于點;點在反比例函數(shù)的圖象上,以點為圓心,半徑為的作圓與軸,軸分別相切于點、(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)請連結,并求出的面積;(3)直接寫出當時,的解集25(10分)在傳箴言活動中,某班團支部對該班全體團員在一個月內(nèi)所發(fā)箴言條數(shù)的情況進行統(tǒng)計,并繪制成了如圖所示的兩幅統(tǒng)計圖(1)將條形統(tǒng)計圖補充完整;(2)該班團員在這一個月內(nèi)所發(fā)箴言的平均條數(shù)是_;(3)如果發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學,現(xiàn)要從發(fā)了3條箴言和4條箴言的同學中分別選出一位參加總結會,請你用列表或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學
9、的概率26(12分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)y=mx與y=nx(x0,0mn)的圖象上,對角線BDy軸,且BDAC于點P已知點B的橫坐標為1(1)當m=1,n=20時若點P的縱坐標為2,求直線AB的函數(shù)表達式若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由27(12分)(2016山東省煙臺市)某中學廣場上有旗桿如圖1所示,在學習解直角三角形以后,數(shù)學興趣小組測量了旗桿的高度如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落
10、在斜坡上的影長CD為3米,ABBC,同一時刻,光線與水平面的夾角為72,1米的豎立標桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結果精確到0.1米)(參考數(shù)據(jù):sin720.95,cos720.31,tan723.08)參考答案一、選擇題(本大題共12個小題,每小題4分,共48分在每小題給出的四個選項中,只有一項是符合題目要求的)1、B【解析】試題分析:根據(jù)AOD=20可得:AOC=70,根據(jù)題意可得:BOC=AOB+AOC=90+70=160.考點:角度的計算2、A【解析】試題解析:一個斜坡長130m,坡頂離水平地面的距離為50m,這個斜坡的水平距離為:=10m,這個斜坡的坡度為:50:1
11、0=5:1故選A點睛:本題考查解直角三角形的應用-坡度坡角問題,解題的關鍵是明確坡度的定義坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式3、C【解析】分析:根據(jù)方程解的定義,一一判斷即可解決問題;詳解:Ax40,x4+2=0無解;故本選項不符合題意; B0,=1無解,故本選項不符合題意; Cx2+2x1=0,=8=4=120,方程有實數(shù)根,故本選項符合題意; D解分式方程=,可得x=1,經(jīng)檢驗x=1是分式方程的增根,故本選項不符合題意 故選C點睛:本題考查了無理方程、根的判別式、高次方程、分式方程等知識,解題的關鍵是
12、熟練掌握基本知識,屬于中考??碱}型4、B【解析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據(jù)中位數(shù)的意義分析即可詳解:35個不同的成績按從小到大排序后,中位數(shù)及中位數(shù)之后的共有18個數(shù),故只要知道自己的成績和中位數(shù)就可以知道是否進入決賽了故選B點睛:本題考查了統(tǒng)計量的選擇,以及中位數(shù)意義,解題的關鍵是正確的求出這組數(shù)據(jù)的中位數(shù)5、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集 2(1 x)4去括號得:224移項得:2x2,系數(shù)化為1得:x1,故選A “點睛”本題主要考查解一元一次不等式的基本能力
13、,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變6、B【解析】首先連接AB,由題意易證得AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì),可求得AOB的度數(shù)【詳解】連接AB,根據(jù)題意得:OB=OA=AB,AOB是等邊三角形,AOB=60.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質(zhì),解題的關鍵是熟練的掌握等邊三角形的判定與性質(zhì).7、B【解析】根據(jù)三角形中位線定理求出DE,得到DFBM,再證明EC=EF=AC,由此即可解決問題【詳解】在RTABC中,ABC=90,AB=2,BC=1,AC=10,DE是ABC的中位線,DFBM,DE=BC=3,EF
14、C=FCM,F(xiàn)CE=FCM,EFC=ECF,EC=EF=AC=5,DF=DE+EF=3+5=2故選B8、C【解析】由統(tǒng)計圖中提供的數(shù)據(jù),根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、極差的定義分別列出算式,求出答案:【詳解】解:90出現(xiàn)了5次,出現(xiàn)的次數(shù)最多,眾數(shù)是90;共有10個數(shù),中位數(shù)是第5、6個數(shù)的平均數(shù),中位數(shù)是(90+90)2=90;平均數(shù)是(801+852+905+952)10=89;極差是:9580=1錯誤的是C故選C9、C【解析】列表得出進出的所有情況,再從中確定出恰好選擇從同一個口進出的結果數(shù),繼而根據(jù)概率公式計算可得【詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBC
15、ACBCCCDCECDADBDCDDDEDEAEBECEDEEE一共有25種等可能的情況,恰好選擇從同一個口進出的有5種情況,恰好選擇從同一個口進出的概率為=,故選C【點睛】此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比10、A【解析】分析:由SABC=9、SAEF=1且AD為BC邊的中線知SADE=SAEF=2,SABD=SABC=,根據(jù)DAEDAB知,據(jù)此求解可得詳解:如圖,SABC=9、SAEF=1,且AD為BC邊的中
16、線,SADE=SAEF=2,SABD=SABC=,將ABC沿BC邊上的中線AD平移得到ABC,AEAB,DAEDAB,則,即,解得AD=2或AD=-(舍),故選A點睛:本題主要平移的性質(zhì),解題的關鍵是熟練掌握平移變換的性質(zhì)與三角形中線的性質(zhì)、相似三角形的判定與性質(zhì)等知識點11、C【解析】試題解析:由于ABC是直角三角形,所以當反比例函數(shù)經(jīng)過點A時k最小,進過點C時k最大,據(jù)此可得出結論ABC是直角三角形,當反比例函數(shù)經(jīng)過點A時k最小,經(jīng)過點C時k最大,k最小=12=2,k最大=44=1,2k1故選C12、B【解析】試題分析:根據(jù)反比例函數(shù)y=kx的性質(zhì),當k0時,在每一個象限內(nèi),函數(shù)值y隨自變
17、量x的增大而減??;當k0時,在每一個象限內(nèi),函數(shù)值y隨自變量x增大而增大,即可作出判斷試題解析:A、(-1,2)滿足函數(shù)的解析式,則圖象必經(jīng)過點(-1,2); B、在每個象限內(nèi)y隨x的增大而增大,在自變量取值范圍內(nèi)不成立,則命題錯誤; C、命題正確; D、命題正確故選B考點:反比例函數(shù)的性質(zhì)二、填空題:(本大題共6個小題,每小題4分,共24分)13、-1【解析】利用題中的新定義計算即可求出值【詳解】解:根據(jù)題中的新定義得:原式=*(1)=3*(1)=1故答案為1【點睛】本題考查了有理數(shù)的混合運算,熟練掌握運算法則是解答本題的關鍵14、1【解析】分析:對所求代數(shù)式根據(jù)分式的混合運算順序進行化簡,
18、再把變形后整體代入即可.詳解: 故答案為1.點睛:考查分式的混合運算,掌握運算順序是解題的關鍵.注意整體代入法的運用.15、1【解析】先設點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據(jù)AOD的面積為3,列出關系式求得k的值解:設點D坐標為(a,b),點D為OB的中點,點B的坐標為(2a,2b),k=4ab,又ACy軸,A在反比例函數(shù)圖象上,A的坐標為(4a,b),AD=4aa=3a,AOD的面積為3,3ab=3,ab=2,k=4ab=42=1故答案為1“點睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運用待定系數(shù)法求反比例函數(shù)解析式,根據(jù)AOD的面積為
19、1列出關系式是解題的關鍵16、m2【解析】試題分析:有函數(shù)y=m-2x的圖象在其所在的每一象限內(nèi),函數(shù)值y隨自變量x的增大而減小可得m-20,解得m2,考點:反比例函數(shù)的性質(zhì).17、1【解析】根據(jù)一個正數(shù)的算術平方根就是其正的平方根即可得出.【詳解】,9算術平方根為1故答案為1【點睛】本題考查了算術平方根,熟練掌握算術平方根的概念是解題的關鍵.18、【解析】根據(jù)題意,畫出樹狀圖,然后根據(jù)樹狀圖和概率公式求概率即可【詳解】解:畫樹狀圖得:共有9種等可能的結果,至少有一輛汽車向左轉的有5種情況,至少有一輛汽車向左轉的概率是:故答案為:【點睛】此題考查的是求概率問題,掌握樹狀圖的畫法和概率公式是解決
20、此題的關鍵三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟19、(1) ;(1) ,E(1,1);(3)存在,P點坐標可以為(1+,5)或(3,5)【解析】(1)設B(x1,5),由已知條件得 ,進而得到B(2,5)又由對稱軸求得b最終得到拋物線解析式.(1)先求出直線BC的解析式,再設E(m,m+1),F(xiàn)(m,m1+m+1)求得FE的值,得到SCBFm1+2m又由S四邊形CDBFSCBF+SCDB,得S四邊形CDBF最大值, 最終得到E點坐標(3)設N點為(n,n1+n+1),1n2過N作NOx軸于點P,得PGn1又由直角三角形的判定,得ABC為直角三角形,由
21、ABCGNP, 得n1+或n1(舍去),求得P點坐標又由ABCGNP,且時,得n3或n2(舍去)求得P點坐標【詳解】解:(1)設B(x1,5)由A(1,5),對稱軸直線x 解得,x12B(2,5)又b拋物線解析式為y ,(1)如圖1,B(2,5),C(5,1)直線BC的解析式為yx+1由E在直線BC上,則設E(m,m+1),F(xiàn)(m,m1+m+1)FEm1+m+1(n+1)m1+1m由SCBFEFOB,SCBF(m1+1m)2m1+2m又SCDBBDOC(2)1 S四邊形CDBFSCBF+SCDBm1+2m+化為頂點式得,S四邊形CDBF(m1)1+ 當m1時,S四邊形CDBF最大,為此時,E點
22、坐標為(1,1)(3)存在如圖1,由線段FG繞點G順時針旋轉一個角(595),設N(n,n1+n+1),1n2過N作NOx軸于點P(n,5)NPn1+n+1,PGn1又在RtAOC中,AC1OA1+OC11+25,在RtBOC中,BC1OB1+OC116+215AB15115AC1+BC1AB1ABC為直角三角形當ABCGNP,且時,即, 整理得,n11n65解得,n1+ 或n1(舍去)此時P點坐標為(1+,5)當ABCGNP,且時,即, 整理得,n1+n115解得,n3或n2(舍去)此時P點坐標為(3,5)綜上所述,滿足題意的P點坐標可以為,(1+,5),(3,5)【點睛】本題考查求拋物線,
23、三角形的性質(zhì)和面積的求法,直角三角形的判定,以及三角形相似的性質(zhì),屬于較難題.20、(1)見解析;(2)3;1.【解析】(1)證出EC為O的切線;由切線長定理得出EC=ED,再求得EB=ED,即可得出結論;(2)由含30角的直角三角形的性質(zhì)得出AB,由勾股定理求出BC,再由直角三角形斜邊上的中線性質(zhì)即可得出DE;由等腰三角形的性質(zhì),得到ODA=A=1,于是DOC=90然后根據(jù)有一組鄰邊相等的矩形是正方形,即可得到結論【詳解】(1)證明:連接DOACB=90,AC為直徑,EC為O的切線;又ED也為O的切線,EC=ED,又EDO=90,BDE+ADO=90,BDE+A=90又B+A=90,BDE=
24、B,BE=ED,BE=EC;(2)解:ACB=90,B=30,AC=2,AB=2AC=4,BC=6,AC為直徑,BDC=ADC=90,由(1)得:BE=EC,DE=BC=3,故答案為3;當B=1時,四邊形ODEC是正方形,理由如下:ACB=90,A=1,OA=OD,ADO=1,AOD=90,DOC=90,ODE=90,四邊形DECO是矩形,OD=OC,矩形DECO是正方形故答案為1【點睛】本題考查了圓的切線性質(zhì)、解直角三角形的知識、切線長定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型21、 (1)證明見解析;(2)CE=1【解析】(1)求出ADO+ADE=
25、90,推DEOD,根據(jù)切線的判定推出即可;(2)求出CD,AC的長,證CDECAD,得出比例式,求出結果即可【詳解】(1)連接OD,AB是直徑,ADB=90,ADO+BDO=90,OB=OD,BDO=ABD,ABD=ADE,ADO+ADE=90,即,ODDE,OD為半徑,DE為O的切線;(2)O的半徑為,AB=2OA=AC,ADB=90,ADC=90,在RtADC中,由勾股定理得:DC=5,ODE=ADC=90,ODB=ABD=ADE,EDC=ADO,OA=OD,ADO=OAD,AB=AC,ADBC,OAD=CAD,EDC=CAD,C=C,CDECAD,=,=,解得:CE=1【點睛】本題考查了
26、等腰三角形的性質(zhì)與切線的判定,解題的關鍵是熟練的掌握等腰三角形的性質(zhì)與切線的判定.22、1【解析】先進行同底數(shù)冪的乘除以及冪的乘方運算,再合并同類項得到化簡后的式子,將a的值代入化簡后的式子計算即可.【詳解】原式=a6a6+a6=a6,當a=1時,原式=1【點睛】本題主要考查同底數(shù)冪的乘除以及冪的乘方運算法則.23、(1)5;(2);(3)時,半徑PF;t16,半徑PF12.【解析】(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PFBE知,據(jù)此求得AF=t,再分0t4和t4兩種情況分別求出EF即可得;(3)由以點F為圓心的F恰好與直線AB
27、、BC相切時PF=PG,再分t=0或t=4、0t4、t4這三種情況分別求解可得【詳解】(1)四邊形ABCD為矩形,BCAD5,BECE32,則BE3,CE2,AE5.(2)如圖1,當點P在線段AB上運動時,即0t4,PFBE,即,AFt,則EFAEAF5t,即y5t(0t4);如圖2,當點P在射線AB上運動時,即t4,此時,EFAFAEt5,即yt5(t4);綜上,;(3)以點F為圓心的F恰好與直線AB、BC相切時,PFFG,分以下三種情況:當t0或t4時,顯然符合條件的F不存在;當0t4時,如解圖1,作FGBC于點G,則FGBP4t,PFBC,APFABE,即,PFt,由4tt可得t,則此時
28、F的半徑PF;當t4時,如解圖2,同理可得FGt4,PFt,由t4t可得t16,則此時F的半徑PF12.【點睛】本題主要考查了矩形的性質(zhì),勾股定理,動點的函數(shù)為題,切線的性質(zhì),相似三角形的判定與性質(zhì)及分類討論的數(shù)學思想.解題的關鍵是熟練掌握切線的性質(zhì)、矩形的性質(zhì)及相似三角形的判定與性質(zhì)24、(1),;(2)4;(3)【解析】(1)連接CB,CD,依據(jù)四邊形BODC是正方形,即可得到B(1,2),點C(2,2),利用待定系數(shù)法即可得到反比例函數(shù)和一次函數(shù)的解析式;(2)依據(jù)OB=2,點A的橫坐標為-4,即可得到AOB的面積為:24=4;(3)依據(jù)數(shù)形結合思想,可得當x1時,k1x+b1的解集為:
29、-4x1【詳解】解:(1)如圖,連接,C與軸,軸相切于點D,且半徑為,四邊形是正方形,點,把點代入反比例函數(shù)中,解得:,反比例函數(shù)解析式為:,點在反比例函數(shù)上,把代入中,可得,把點和分別代入一次函數(shù)中,得出:,解得:,一次函數(shù)的表達式為:;(2)如圖,連接,點的橫坐標為,的面積為:;(3)由,根據(jù)圖象可知:當時,的解集為:【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點依據(jù)待定系數(shù)法求函數(shù)解析式,解題的關鍵是求出C,B點坐標25、(1)作圖見解析;(2)3;(3)【解析】(1)根據(jù)發(fā)了3條箴言的人數(shù)與所占的百分比列式計算即可求出該班全體團員的總人數(shù)為12,再求出發(fā)了4條箴言的人數(shù),然后補全統(tǒng)計圖即
30、可;(2)利用該班團員在這一個月內(nèi)所發(fā)箴言的總條數(shù)除以總人數(shù)即可求得結果;(3)列舉出所有情況,看恰好是一位男同學和一位女同學占總情況的多少即可【詳解】解:(1)該班團員人數(shù)為:325%=12(人),發(fā)了4條贈言的人數(shù)為:122231=4(人),將條形統(tǒng)計圖補充完整如下: (2)該班團員所發(fā)贈言的平均條數(shù)為:(21+22+33+44+15)12=3,故答案為:3;(3)發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學,發(fā)了3條箴言的同學中有一位女同學,發(fā)了4條箴言的同學中有一位男同學,方法一:列表得:共有12種結果,且每種結果的可能性相同,所選兩位同學中恰好是一位男同學和一位女同學的情況有7種,所選兩位同學中恰好是一位男同學和一位女同學的概率為:;方法二:畫樹狀圖如下:共有12種結果,且每種結果的可能性相同,所選兩位同學中恰好是一位男同學和一位女同學的情況有7種,所選兩位同學中恰好是一位男同學和一位女同學的概率為:;【點睛】此題考查了樹狀圖法與列表法求概率,以及條形統(tǒng)計圖與扇形統(tǒng)計圖的知識注意平均條數(shù)=總條數(shù)總人數(shù);如果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 碾碎機細分市場深度研究報告
- 脫水機造紙工業(yè)用項目營銷計劃書
- 織錦人像商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 反轉片出租行業(yè)相關項目經(jīng)營管理報告
- 牙科用氣體市場發(fā)展前景分析及供需格局研究預測報告
- 工具袋產(chǎn)品供應鏈分析
- 在線健身教育行業(yè)營銷策略方案
- 牲畜用洗滌劑殺蟲劑市場發(fā)展前景分析及供需格局研究預測報告
- 物理學設備和儀器項目營銷計劃書
- 拖運設備礦井用產(chǎn)品供應鏈分析
- 《中國老年骨質(zhì)疏松癥診療指南(2023)》解讀-
- “雙減”背景下小學英語課后作業(yè)設計實踐探究 論文
- 廣東省佛山市順德區(qū)部分學校2023-2024學年四年級上學期期中語文試卷
- 南方航空空乘招聘報名表
- 廣東省廣州市2023-2024學年七年級上學期11月期中道德與法治試題
- 人民醫(yī)院能源托管服務項目可研技術方案書
- 財務共享服務中心-整體設計-V1.0
- 環(huán)刀法測壓實度自動計算表格(2020.4.10)
- 2022年長江產(chǎn)業(yè)投資集團限公司招聘【150人】上岸筆試歷年難、易錯點考題附帶參考答案與詳解
- 預防事故和職業(yè)危害的措施及應注意的安全事項課件
- 基于Android的個性化天氣預報系統(tǒng)的設計與軟件實現(xiàn)
評論
0/150
提交評論