




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1 答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1設(shè)、是兩條不同的直線,、是兩個(gè)不同的平面,則的一個(gè)充分條件是( )A且B且C且D且2已知函數(shù),
2、若對任意,都有成立,則實(shí)數(shù)的取值范圍是( )ABCD3已知函數(shù),則的極大值點(diǎn)為( )ABCD4過拋物線()的焦點(diǎn)且傾斜角為的直線交拋物線于兩點(diǎn).,且在第一象限,則( )ABCD5如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積( )ABCD6已知數(shù)列滿足,且,則的值是( )ABC4D7若函數(shù)的圖象經(jīng)過點(diǎn),則函數(shù)圖象的一條對稱軸的方程可以為( )ABCD8已知焦點(diǎn)為的拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,則當(dāng)取得最大值時(shí),直線的方程為( )A或B或C或D9明代數(shù)學(xué)家程大位(15331606年),有感于當(dāng)時(shí)籌算方法的不便,用其畢生心血寫出算法統(tǒng)宗,可謂集成計(jì)算的鼻
3、祖如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為( )ABCD10某三棱錐的三視圖如圖所示,則該三棱錐的體積為ABC2D11設(shè)a,b(0,1)(1,+),則a=b是logab=logba的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件12已知實(shí)數(shù)滿足線性約束條件,則的取值范圍為( )A(-2,-1B(-1,4C-2,4)D0,4二、填空題:本題共4小題,每小題5分,共20分。13展開式中的系數(shù)的和大于8而小于32,則_14如圖,已知圓內(nèi)接四邊形ABCD,其中,則_15我國著名的數(shù)學(xué)家秦九韶在數(shù)書九章提出了“三斜求
4、積術(shù)”他把三角形的三條邊分別稱為小斜、中斜和大斜三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個(gè)數(shù),小斜平方乘以大斜平方,送到上面得到的那個(gè)數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實(shí)”,1作為“隅”,開平方后即得面積所謂“實(shí)”、“隅”指的是在方程中,p為“隅”,q為“實(shí)”即若的大斜、中斜、小斜分別為a,b,c,則.已知點(diǎn)D是邊AB上一點(diǎn),則的面積為_16設(shè)(其中為自然對數(shù)的底數(shù)),若函數(shù)恰有4個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,在三棱錐中,平面平面,、分別為、中點(diǎn)(1)求證:;(2
5、)求二面角的大小18(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個(gè)實(shí)數(shù)解、(),求證:.19(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.20(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;(2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求的最大值.21(12分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點(diǎn);(2)若函數(shù)在區(qū)間上的最小值為1,求的值.22(10分)已知,均為正項(xiàng)數(shù)列,其
6、前項(xiàng)和分別為,且,當(dāng),時(shí),.(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】由且可得,故選B.2D【解析】先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點(diǎn)作函數(shù)的切線,設(shè)切點(diǎn)為,則,解得,所以切線斜率為,所以,解得.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.3A【解析】求出函數(shù)的導(dǎo)函數(shù),令
7、導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因?yàn)椋士傻?,令,因?yàn)?,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.4C【解析】作,;,由題意,由二倍角公式即得解.【詳解】由題意,準(zhǔn)線:,作,;,設(shè),故,.故選:C【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5C【解析】畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,PABC,正方體的棱長為2,該幾何體的表面積:故選C【點(diǎn)睛】本題考查三視圖求解幾何體
8、的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵6B【解析】 由,可得,所以數(shù)列是公比為的等比數(shù)列, 所以,則, 則,故選B.點(diǎn)睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項(xiàng)公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡化運(yùn)算過程.7B【解析】由點(diǎn)求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項(xiàng).【詳解】由題可知.所以令,得令,得故選:B【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)圖象上點(diǎn)的坐
9、標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.8A【解析】過作與準(zhǔn)線垂直,垂足為,利用拋物線的定義可得,要使最大,則應(yīng)最大,此時(shí)與拋物線相切,再用判別式或?qū)?shù)計(jì)算即可.【詳解】過作與準(zhǔn)線垂直,垂足為,則當(dāng)取得最大值時(shí),最大,此時(shí)與拋物線相切,易知此時(shí)直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.9C【解析】根據(jù)程序框圖依次計(jì)算得到答案.【詳解】,;,;,;,;,此時(shí)不滿足,跳出循環(huán),輸出結(jié)果為,由題意,得故選:【點(diǎn)睛】本題考查了程序框圖的計(jì)算,意在考查學(xué)生的
10、理解能力和計(jì)算能力.10A【解析】 由給定的三視圖可知,該幾何體表示一個(gè)底面為一個(gè)直角三角形,且兩直角邊分別為和,所以底面面積為 高為的三棱錐,所以三棱錐的體積為,故選A11A【解析】根據(jù)題意得到充分性,驗(yàn)證a=2,b=12得出不必要,得到答案.【詳解】a,b0,11,+,當(dāng)a=b時(shí),logab=logba,充分性;當(dāng)logab=logba,取a=2,b=12,驗(yàn)證成立,故不必要.故選:A.【點(diǎn)睛】本題考查了充分不必要條件,意在考查學(xué)生的計(jì)算能力和推斷能力.12B【解析】作出可行域,表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,觀察可行域可得最小值【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點(diǎn)與定
11、點(diǎn)連線斜率,過與直線平行的直線斜率為1,故選:B【點(diǎn)睛】本題考查簡單的非線性規(guī)劃解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動點(diǎn)與定點(diǎn)連線斜率,由直線與可行域的關(guān)系可得結(jié)論二、填空題:本題共4小題,每小題5分,共20分。134【解析】由題意可得項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【詳解】觀察式子可知,故答案為:4.【點(diǎn)睛】該題考查的是有關(guān)二項(xiàng)式定理的問題,涉及到的知識點(diǎn)有展開式中項(xiàng)的系數(shù)和,屬于基礎(chǔ)題目.14【解析】由題意可知,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,連接BD,在中,有在中,所以,則,所以連接AC,
12、同理可得,所以所以故答案為:【點(diǎn)睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計(jì)算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對角互補(bǔ).15.【解析】利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術(shù)”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術(shù)”可得,所以.【點(diǎn)睛】本題考查正切的和角公式,同角三角函數(shù)的基本關(guān)系式,余弦定理的應(yīng)用,考查學(xué)生分析問題的能力和計(jì)算整理能力,難度較易.16【解析】求函數(shù),研究函數(shù)的單調(diào)性和極值,作出函數(shù)的圖象,設(shè),若函數(shù)恰有4個(gè)零點(diǎn),則等價(jià)為函數(shù)有兩個(gè)零點(diǎn),滿足或,利用一元二次函數(shù)根的分布
13、進(jìn)行求解即可【詳解】當(dāng)時(shí),由得:,解得,由得:,解得,即當(dāng)時(shí),函數(shù)取得極大值,同時(shí)也是最大值,(e),當(dāng),當(dāng),作出函數(shù)的圖象如圖,設(shè),由圖象知,當(dāng)或,方程有一個(gè)根,當(dāng)或時(shí),方程有2個(gè)根,當(dāng)時(shí),方程有3個(gè)根,則,等價(jià)為,當(dāng)時(shí),若函數(shù)恰有4個(gè)零點(diǎn),則等價(jià)為函數(shù)有兩個(gè)零點(diǎn),滿足或,則,即(1) 解得:,故答案為:【點(diǎn)睛】本題主要考查函數(shù)與方程的應(yīng)用,利用換元法進(jìn)行轉(zhuǎn)化一元二次函數(shù)根的分布以及求的導(dǎo)數(shù),研究函數(shù)的的單調(diào)性和極值是解決本題的關(guān)鍵,屬于難題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (1)證明見解析;(2)60.【解析】試題分析:(1)連結(jié)PD,由題意可得,則AB平
14、面PDE,;(2)法一:結(jié)合幾何關(guān)系做出二面角的平面角,計(jì)算可得其正切值為,故二面角的大小為;法二:以D為原點(diǎn)建立空間直角坐標(biāo)系,計(jì)算可得平面PBE的法向量平面PAB的法向量為據(jù)此計(jì)算可得二面角的大小為.試題解析:(1)連結(jié)PD,PA=PB,PDAB,BCAB,DEAB又,AB平面PDE,PE平面PDE,ABPE(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過D做DF垂直PB與F,連接EF,則EFPB,DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,
15、平面PAB平面ABC=AB,PDAB,PD平面ABC如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,B(1,0,0),P(0,0,),E(0,0),=(1,0,),=(0,)設(shè)平面PBE的法向量,令,得DE平面PAB,平面PAB的法向量為設(shè)二面角的大小為,由圖知,所以即二面角的大小為.18(1)當(dāng)時(shí), 在單調(diào)遞增,當(dāng)時(shí),單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)證明見解析【解析】(1)先求解導(dǎo)函數(shù),然后對參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【詳解】(1),當(dāng)時(shí),恒成立,則在單調(diào)遞增當(dāng)時(shí),令得,解得,又,
16、當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.(2)依題意得,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增若方程有三個(gè)實(shí)數(shù)解,則法一:雙偏移法設(shè),則在上單調(diào)遞增,即,其中,在上單調(diào)遞減,即設(shè),在上單調(diào)遞增,即,其中,在上單調(diào)遞增,即.法二:直接證明法,在上單調(diào)遞增,要證,即證設(shè),則在上單調(diào)遞減,在上單調(diào)遞增,即(注意:若沒有證明,扣3分)關(guān)于的證明:(1)且時(shí),(需要證明),其中(2),即,則【點(diǎn)睛】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對于含參函數(shù)單調(diào)性的分析,可通過分析參數(shù)的臨界值,由此分類討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確
17、定函數(shù)的最值,從而達(dá)到證明不等式的目的.19(1)單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間(2)證明見解析【解析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域?yàn)?,則,令,則,當(dāng),單調(diào)遞減;當(dāng),單調(diào)遞增;故,故函數(shù)的單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間.(2)證明,即為,因?yàn)?,即證,令,則,令,則,當(dāng)時(shí),所以在上單調(diào)遞減,則,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時(shí),令,可知對于恒成立,即,即,故,即證,故原不等式得證.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問題,屬于中檔題20(1):
18、,直線:;(2)【解析】(1)由消參法把參數(shù)方程化為普通方程,再由公式進(jìn)行直角坐標(biāo)方程與極坐標(biāo)方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標(biāo)方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、【詳解】(1)消去參數(shù)可得曲線的普通方程是,即,代入得,即,曲線的極坐標(biāo)方程是;由,化為直角坐標(biāo)方程為(2)設(shè),則,當(dāng)時(shí),取得最大值為【點(diǎn)睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,掌握公式可輕松自如進(jìn)行極坐標(biāo)方程與直角坐標(biāo)方程的互化21(1)證明見解析;(2)【解析】(1)求解出導(dǎo)函數(shù),分析導(dǎo)函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)的存在性定理說明在上存在唯一的零點(diǎn)即可;(2)根據(jù)導(dǎo)函數(shù)零點(diǎn),判斷出的單調(diào)性,從
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Module 10 Australia Unit 3 教學(xué)設(shè)計(jì) 2024-2025學(xué)年外研版九年級英語上冊
- 《搭配問題》(教學(xué)設(shè)計(jì))-2023-2024學(xué)年三年級下冊數(shù)學(xué)人教版
- Unit 5 Here and now Section B project 教學(xué)設(shè)計(jì) 2024-2025學(xué)年人教版(2024)七年級英語下冊
- Unit 3 My School (Section A 2a~2f)教學(xué)設(shè)計(jì) 2024-2025學(xué)年人教版(2024)七年級英語上冊
- 20 談創(chuàng)造性思維2024-2025學(xué)年九年級語文上冊同步教學(xué)設(shè)計(jì)(河北專版)
- 21古詩三首《出塞》《涼州詞》教學(xué)設(shè)計(jì)-2024-2025學(xué)年統(tǒng)編版語文四年級上冊
- 2024-2025學(xué)年高中物理 4.6 用牛頓運(yùn)動定律解決問題(一)教學(xué)設(shè)計(jì) 新人教版必修1
- 硝酸甘油護(hù)理查房
- 0 數(shù)學(xué)游戲-在教室里認(rèn)一認(rèn)(教學(xué)設(shè)計(jì))-2024-2025學(xué)年一年級上冊數(shù)學(xué)人教版
- 2024秋七年級歷史上冊 第二單元 夏商周時(shí)期 早期國家的產(chǎn)生與社會變革 第6課 動蕩的春秋時(shí)期教學(xué)設(shè)計(jì)3 新人教版
- 學(xué)習(xí)課件鑄牢中華民族共同體意識PPT
- 湖南省對口招生考試醫(yī)衛(wèi)專業(yè)十年真題(2010-2019年)
- DB32∕T 3916-2020 建筑地基基礎(chǔ)檢測規(guī)程
- 華能國際電力股份有限公司本質(zhì)安全體系管理手冊
- 中青劇院管理手冊
- 《對話大千世界-繪畫創(chuàng)意與實(shí)踐》 第1課時(shí) 定格青春-向藝術(shù)家學(xué)創(chuàng)作
- CET46大學(xué)英語四六級單詞EXCEL版
- 文化人類學(xué)完整版
- 2022年南通市特殊教育崗位教師招聘考試筆試試題及答案解析
- GB/T 13888-2009在開磁路中測量磁性材料矯頑力的方法
- 《劉姥姥人物形象分析》課件-部編版語文九年級上冊
評論
0/150
提交評論