2022-2023學年吉林省四平市梨樹縣孟家?guī)X鎮(zhèn)中學高三數(shù)學文上學期期末試題含解析_第1頁
2022-2023學年吉林省四平市梨樹縣孟家?guī)X鎮(zhèn)中學高三數(shù)學文上學期期末試題含解析_第2頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2022-2023學年吉林省四平市梨樹縣孟家?guī)X鎮(zhèn)中學高三數(shù)學文上學期期末試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. “x2”是“l(fā)n(x1)0”的()A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件參考答案:B【考點】必要條件、充分條件與充要條件的判斷【分析】根據(jù)對數(shù)函數(shù)的性質(zhì)結(jié)合集合的包含關(guān)系判斷即可【解答】解:由ln(x1)0,得:0 x11,解得:1x2,故x2是1x2的必要不充分條件,故選:B2. 的A充分不必要條件 B必要不充分條件 C充要條件 D既不充分也不必要條件參考答案:A3. 已知函數(shù)

2、的零點,其中常數(shù)滿足,則的值為( )A. B. C. D. 參考答案:D略4. 若函數(shù)f(x)=x-sin2x+asinx在(-,+ )單調(diào)遞增,則a的取值范圍是(A)-1,1(B)(C)(D)參考答案:C試題分析:f(x)=1-cos2x+acosx0對xR恒成立,故1-(2cos2x-1)+acosx0,即acosx- cos2x+0恒成立,即-t2+ at+0對t-1,1恒成立,f(t)=-t2+ at+,開口向下的二次函數(shù)f(t)的最小值可能值為端點值,故只需要保證,解得5. ,則的值等于 A. B. C. D. 參考答案:B略6. 定義運算,若函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是()

3、ABCD參考答案:【知識點】二次函數(shù)的性質(zhì)B5 【答案解析】D 解析:,=(x1)(x+3)2(x)=x2+4x3=(x+2)27,f(x)的單調(diào)遞減區(qū)間為(,2),函數(shù)在上單調(diào)遞減,(,2),即m2,實數(shù)m的取值范圍是m2故選D【思路點撥】先根據(jù)新定義化簡函數(shù)解析式,然后求出該函數(shù)的單調(diào)減區(qū)間,然后使得是減區(qū)間的子集,從而可求出m的取值范圍7. 已知函數(shù)和在的圖象如下所示: 給出下列四個命題:(1)方程; (2)方程;(3)方程; (4)方程.其中正確的命題個數(shù)( )A1 B2 C3D4 參考答案:答案:C 8. 已知命題p:“ 0,有成立”,則p為( ) A0,有0,有0,有l(wèi)成立參考答案

4、:C略9. 如圖,閱讀程序框圖,任意輸入一次x(0 x1)與y(0y1),則能輸出數(shù)對(x,y)的概率為( )ABCD參考答案:【知識點】幾何概型K3A 解析:是幾何概型,所有的基本事件=設(shè)能輸出數(shù)對(x,y)為事件A,則A=,S()=1,S(A)=01x2dx=故選A【思路點撥】據(jù)程序框圖得到事件“能輸出數(shù)對(x,y)”滿足的條件,求出所有基本事件構(gòu)成的區(qū)域面積;利用定積分求出事件A構(gòu)成的區(qū)域面積,據(jù)幾何概型求出事件的概率10. 在中,若=, B=,BC=,則AC=A4 B. 2 C. D. 參考答案:B二、 填空題:本大題共7小題,每小題4分,共28分11. _。參考答案:2略12. 平面

5、向量的夾角為,則_參考答案:略13. 設(shè),則二項式的展開式中的常數(shù)項等于 .參考答案:-160略14. 函數(shù)f(x)=axx2(a1)有三個不同的零點,則實數(shù)a的取值范圍是參考答案:1a【考點】函數(shù)的零點與方程根的關(guān)系【專題】綜合題;導數(shù)的綜合應(yīng)用【分析】x0時,必有一個交點,x0時,由axx2=0,可得lna=,構(gòu)造函數(shù),確定函數(shù)的單調(diào)性,求出1a時有兩個交點,即可得出結(jié)論【解答】解:x0時,由axx2=0,可得ax=x2,xlna=2lnx,lna=,令h(x)=,則h(x)=0,可得x=e,函數(shù)在(0,e)上單調(diào)增,在(e,+)上單調(diào)減,h(x)max=h(e)=,lna,1a時有兩個交

6、點;又x0時,必有一個交點,1a時,函數(shù)f(x)=axx2(a1)有三個不同的零點,故答案為:1a【點評】本題考查函數(shù)的零點,考查函數(shù)的單調(diào)性,考查學生分析解決問題的能力,屬于中檔題15. 設(shè),其中或1,并記, 對于給定的構(gòu)造無窮數(shù)列如下:,(1)若109,則 (用數(shù)字作答);(2)給定一個正整數(shù),若,則滿足的的最小值為_.參考答案:(1)91, (2)16. 已知直角梯形,, ,沿折疊成三棱錐,當三棱錐體積最大時,求此時三棱錐外接球的體積 .參考答案:17. 設(shè)z=kx+y,其中實數(shù)x,y滿足,若z的最大值為12,則實數(shù)k= 參考答案:2考點:簡單線性規(guī)劃 專題:不等式的解法及應(yīng)用分析:先畫

7、出可行域,得到角點坐標再對k進行分類討論,通過平移直線z=kx+y得到最大值點A,即可得到答案解答:解:可行域如圖:由得:A(4,4),同樣地,得B(0,2),z=kx+y,即y=kx+z,分k0,k0兩種情況當k0時,目標函數(shù)z=kx+y在A點取最大值,即直線z=kx+y在y軸上的截距z最大,即12=4k+4,得k=2;當k0時,當k時,目標函數(shù)z=kx+y在A點(4,4)時取最大值,即直線z=kx+y在y軸上的截距z最大,此時,12=4k+4,故k=2當k時,目標函數(shù)z=kx+y在B點(0,2)時取最大值,即直線z=kx+y在y軸上的截距z最大,此時,12=0k+2,故k不存在綜上,k=2

8、故答案為:2點評:本題主要考查簡單線性規(guī)劃解決此類問題的關(guān)鍵是正確畫出不等式組表示的可行域,將目標函數(shù)賦予幾何意義三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. (本小題滿分12分)已知(其中)的最小正周期為。()求的單調(diào)遞增區(qū)間; HYPERLINK / 試卷()在中,分別是角A,B,C的對邊,已知,求角C。參考答案:解:(I) HYPERLINK / 試卷 故所求遞增區(qū)間為 (II) HYPERLINK / 試卷 HYPERLINK / 試卷 HYPERLINK / 試卷 HYPERLINK / 試卷 去, 由, HYPERLINK / 試卷19. 如

9、圖,已知三棱錐OABC的三條側(cè)棱OA,OB,OC兩兩垂直,ABC為等邊三角形,M為ABC內(nèi)部一點,點P在OM的延長線上,且PA=PB()證明:OA=OB;()證明:ABOP;()若AP:PO:OC=:1,求二面角POAB的余弦值參考答案:【考點】MT:二面角的平面角及求法;LO:空間中直線與直線之間的位置關(guān)系【分析】()由已知條件利用勾股定理得OA2+OC2=OB2+OC2,OA=OB,得進行證明()根據(jù)題意,通過線面垂直的判定定理及性質(zhì)定理即可證明平面PAB平面POC()以O(shè)A、OB、OC所在的直線分別為x、y、z軸建立空間直角坐標系,則所求值即為平面POA的一個法向量與平面OAB的一個法向

10、量的夾角的余弦值,利用向量法求解【解答】解:()證明:OA,OB,OC兩兩垂直,OA2+OC2=AC2,OB2+OC2=BC2,又ABC為等邊三角形,AC=BC,OA2+OC2=OB2+OC2,OA=OB;()證明:OA,OB,OC兩兩垂直,OCOA,OCOB,OAOB=O,OA、OB?平面OAB,OC平面OAB,而AB?平面OAB,ABOC,取AB中點D,連結(jié)OD、PD,由(1)知,OA=OB,ABOD,由已知PA=PB,ABPD,ABOD,ABPD,ODPD=D,OD、PD?平面POD,AB平面POD,而PO?平面POD,ABPO,ABOC,ABPO,OCPO=O,OC、PO?平面POC,

11、AB平面POC,又AB?平面PAB,平面PAB平面POC;()解:如圖,以O(shè)A、OB、OC所在的直線分別為x、y、z軸,建立空間直角坐標系,由(1)同理可證OA=OB=OC,設(shè)OA=OB=OC=1,則O(0,0,0),A(1,0,0),B(0,1,0),C(0,0,0),C(0,0,0),=(1,0,0),=(1,1,0),設(shè)P(x,y,z),其中x0,y0,z0, =(x,y,z),=(x1,y,z),由()知OPAB,且AP:PO:OC=:1,解得x=y=1,z=2,即=(1,1,2),設(shè)平面POA的法向量為=(x,y,z),又,取z=1,得=(0,2,1),由(2)知,平面OAB的一個法向量為=(0,0,1),記二面角POAB的平面角為,由圖可知為銳角,cos=二面角POAB的余弦值為20. (本小題滿分13分)在中,角所對的邊分別為,且.()求函數(shù)的最大值;()若,求b的值參考答案:().因為,所以.則所以當,即時,取得最大值,且最大值為.7分()由題意知,所以又知,所以,則.因為,所以,則.由得, 13分21. 數(shù)列中,其中0,對于函數(shù) (n2)有.求數(shù)列的通項公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論