Stata與模型的設定課件_第1頁
Stata與模型的設定課件_第2頁
Stata與模型的設定課件_第3頁
Stata與模型的設定課件_第4頁
Stata與模型的設定課件_第5頁
已閱讀5頁,還剩91頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第七章Stata與模型的設定第七章Stata與模型的設定1主要內容:1、遺漏變量的檢驗2、解釋變量個數(shù)的選擇3、多重共線性與逐步回歸法4、極端數(shù)據(jù)的診斷與處理5、虛擬變量的處理6、經(jīng)濟結構變動的Chow檢驗主要內容:1、遺漏變量的檢驗2實驗7-1遺漏變量的檢驗一、實驗基本原理實驗7-1遺漏變量的檢驗一、實驗基本原理3二、實驗數(shù)據(jù)和實驗內容根據(jù)統(tǒng)計資料得到了美國工資的橫截面數(shù)據(jù),變量主要包括:wage=工資,educ=受教育年限,exper=工作經(jīng)驗年限,tenure=任職年限,lwage=工資的對數(shù)值。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“wage1.dta”工作文件中。利用wage1的數(shù)據(jù),分別利用Link方法和Ramsey方法檢驗模型是否遺漏了重要的解釋變量。二、實驗數(shù)據(jù)和實驗內容4三、實驗操作指導1.使用Link方法檢驗遺漏變量Link方法進行檢驗的基本命令語句為:linktest[if][in][,cmd_options]在這個命令語句中,linktest是進行Link檢驗的基本命令,if是表示條件的命令語句,in是范圍語句,cmd_options表示Link檢驗的選項應該與所使用的估計方法的選項一致,例如檢驗之前使用的回歸regress命令,則此處的選項應與regress的選項一致。三、實驗操作指導5例如,利用wage1的數(shù)據(jù),檢驗模型是否遺漏了重要的解釋變量,應該輸入以下命令:usec:\data\wage1.dta,clearreglwageeducexpertenurelinktest第一個命令表示打開數(shù)據(jù)文件wage1,第二個命令語句是對模型進行回歸估計,第三個命令就是進行遺漏變量的Link檢驗,檢驗結果如圖7.1所示。從第二個表格中,可以看到hatsq項的p值為0.018,拒絕了hatsq系數(shù)為零的假設,即說明被解釋變量lwage的擬合值的平方項具有解釋能力,所以可以得出結論原模型可能遺漏了重要的解釋變量。例如,利用wage1的數(shù)據(jù),檢驗模型6為了進一步驗證添加重要變量是否會改變Link檢驗的結果,我們生成受教育年限educ和工作經(jīng)驗年限exper的平方項,重新進行回歸并進行檢驗,這時輸入的命令如下:geneduc2=educ^2genexper2=exper^2reglwageeducexpertenureeduc2exper2linktest第一個命令語句的作用是生成變量educ2,使其值為變量educ的平方;第二個命令語句的作用是生成變量exper2,使其值為變量exper的平方;第三個命令語句的作用是對進行回歸估計;第四個命令就是進行遺漏變量的Link檢驗,檢驗結果如圖7.2所示。為了進一步驗證添加重要變量是否會改變Link檢驗的結果,我們72.使用Ramsey方法檢驗遺漏變量Ramsey方法進行檢驗的基本命令語句為:estatovtest[,rhs]在這個命令語句中,estatovtest是進行Ramsey檢驗的命令語句,如果設定rhs,則在檢驗過程中使用解釋變量,如果不設定rhs,則在檢驗中使用被解釋變量的擬合值。例如,利用wage1的數(shù)據(jù),使用Ramsey方法檢驗模型是否遺漏了重要的解釋變量,應該輸入以下命令:usec:\data\wage1.dta,clearreglwageeducexpertenureestatovtest2.使用Ramsey方法檢驗遺漏變量8在這組命令語句中,第一個命令的功能是打開數(shù)據(jù)文件,第二個命令是對模型進行回歸估計,第三個命令就是進行遺漏變量的Ramsey檢驗,檢驗結果如圖7.3所示。在圖7.3中,第一個圖表仍然是回歸結果,第二部分則是Ramsey檢驗的結果,不難發(fā)現(xiàn)Ramsey檢驗的原假設是模型不存在遺漏變量,檢驗的p值為0.0048,拒絕原假設,即認為原模型存在遺漏變量。在這組命令語句中,第一個命令的功能是打開數(shù)據(jù)文件,第二個命令9為了進一步驗證添加重要變量是否會改變Ramsey檢驗的結果,我們采取Link檢驗中的方法,生成受教育年限educ和工作經(jīng)驗年限exper的平方項,重新進行回歸并進行檢驗,這時輸入的命令如下:geneduc2=educ^2genexper2=exper^2reglwageeducexpertenureeduc2exper2estatovtest這里不再贅述這些命令語句的含義,調整之后的檢驗結果如圖7.4所示,可以發(fā)現(xiàn)此時檢驗的p值為0.5404,無法拒絕原假設,即認為模型不再存在遺漏變量。為了進一步驗證添加重要變量是否會改變Ramsey檢驗的結果,10實驗7-2解釋變量個數(shù)的選擇一、實驗基本原理好的經(jīng)濟理論的標準通常是希望通過更為簡潔的模型來更加精確地描述復雜的經(jīng)濟現(xiàn)象,但是這兩個目標通常是矛盾的,因為通過增加解釋變量的個數(shù)可以提高模型的精確程度,但是同時也犧牲了模型的簡潔性。因此,在現(xiàn)實的經(jīng)濟研究過程中,通常使用信息準則來確定解釋變量的個數(shù),較為常用的信息準則有兩個:(1)赤池信息準則,又稱為AIC準則,其基本思想是通過選擇解釋變量的個數(shù),使得如下目標函數(shù)最小。實驗7-2解釋變量個數(shù)的選擇一、實驗基本原理11

在這個公式中,e代表殘差序列,n代表樣本數(shù)量,K代表解釋變量的個數(shù)。通過這個目標函數(shù)可以看出,第一項是對擬合優(yōu)度的獎勵,即盡可能地使殘差平方和變小,第二項是對解釋變量個數(shù)增多的懲罰,因為目標函數(shù)是解釋變量個數(shù)的增函數(shù)。(2)貝葉斯信息準則,又稱為BIC準則,其基本思想是通過選擇解釋變量的個數(shù),使得如下目標函數(shù)最小。在這個公式中,e代表殘差序列,n代表樣本數(shù)量,K代表解釋變量的個數(shù)。通過這個目標函數(shù)可以看出,BIC準則與AIC準則的唯一區(qū)別就是K的權重不同,一般來說ln(n)>2,所以BIC更加注重模型的簡潔性。在這個公式中,e代表殘差序列,n代表樣本數(shù)量12二、實驗數(shù)據(jù)和實驗內容:根據(jù)統(tǒng)計資料得到了美國工資的橫截面數(shù)據(jù),變量主要包括:wage=工資,educ=受教育年限,exper=工作經(jīng)驗年限,tenure=任職年限,lwage=工資的對數(shù)值。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“wage1.dta”工作文件中。利用wage1的數(shù)據(jù),來確定以下兩個模型:模型和模型哪個更為合理(其中educ2和exper2分別為educ和exper的平方項)。二、實驗數(shù)據(jù)和實驗內容:13三、實驗操作指導使用信息準則,對模型進行檢驗的命令如下:estatic[,n(#)]在這個命令語句中,estatic是進行檢驗的命令語句,選項n(#)的功能是指定BIC準則中的n值,一般使用默認值。例如,利用wage1的數(shù)據(jù),獲得模型的AIC和BIC值,應該輸入以下命令:usec:\data\wage1.dta,clearreglwageeducexpertenureestatic第一個命令表示打開數(shù)據(jù)文件wage1,第二個命令語句是對模型進行回歸估計,第三個命令就是進行信息準則值的計算,計算結果如圖7.5所示,AIC值為635.10,BIC值為652.16。三、實驗操作指導14為了對比分析,我們仍然采取Link檢驗中的方法,生成受教育年限educ和工作經(jīng)驗年限exper的平方項,建立新的模型重新對其進行回歸并計算,這時輸入的命令如下:geneduc2=educ^2genexper2=exper^2reglwageeducexpertenureeduc2exper2estatic這里不再贅述這些命令語句的含義,調整之后的計算結果如圖7.6所示,可以發(fā)現(xiàn)此時計算的AIC值為583.66,BIC值為609.25。通過這兩個模型信息準則值的對比分析,可以得出結論,第二個模型的信息準則值更小,所以此模型優(yōu)于第一個模型。為了對比分析,我們仍然采取Link檢驗中的方法,生成受教育年15實驗7-3多重共線性與逐步回歸法一、實驗基本原理多重共線性問題在多元線性回歸分析中是很常見的,其導致的直接后果是方程回歸系數(shù)估計的標準誤差變大,系數(shù)估計值的精度降低等。多重共線性的問題對于Stata軟件來說并不顯著,因為Stata會自動剔除完全的多重共線性,但是出于知識的完整性,這里還是介紹一下Stata對于多重共線性的識別和處理方法。多重共線性的診斷方法主要有:(1)直觀上說:當模型的擬合優(yōu)度非常高且通過F檢驗,但多數(shù)解釋變量都不顯著,甚至解釋變量系數(shù)符號相反時,可能存在多重共線性。(2)對由解釋變量所組成的序列組進行相關分析時,如果有些變量之間的相關系數(shù)很高,則也反映出可能存在多重共線性。(3)使用命令estatvif,對膨脹因子進行計算,經(jīng)驗上當VIF的均值>=2且VIF的最大值接近或者超過10時,通常認為有較為嚴重的多重共線性。實驗7-3多重共線性與逐步回歸法一、實驗基本原理16當確認模型存在多重共線性時,通常有兩種解決方法消除其影響:一種是收集更多的數(shù)據(jù),增大樣本容量;另一種是通過逐步回歸,改進模型的形式。在現(xiàn)實研究過程中,增大樣本容量的操作不易執(zhí)行,所以逐步回歸法應用更為廣泛。逐步回歸法的基本原理是:先分別擬合被解釋變量對于每一個解釋變量的一元回歸,并將各回歸方程的擬合優(yōu)度按照大小順序排列,然后將擬合優(yōu)度最大的解釋變量作為基礎變量,然后逐漸將其他解釋變量加入模型中并同時觀測t檢驗值的變化,如果t檢驗顯著則保留該變量,否則去除,不斷重復此過程直到加入所有顯著的解釋變量。當確認模型存在多重共線性時,通常有兩種解決方法消除其影響:一17二、實驗數(shù)據(jù)和實驗內容根據(jù)統(tǒng)計資料得到了某市旅游業(yè)的相關數(shù)據(jù),變量主要包括:Y=旅游收入(單位:萬元),X1=某市旅游人數(shù)(單位:人),X2=城鎮(zhèn)居民人均旅游支出(單位:元),X3=農村居民人均旅游支出(單位:元),X4=公路里程(單位:公里),X5=鐵路里程(單位:公里)。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“l(fā)vyou.dta”工作文件中。利用lvyou數(shù)據(jù)估計方程,判斷是否存在多重共線性,若存在,采用逐步回歸法消除多重共線性。二、實驗數(shù)據(jù)和實驗內容18三、實驗操作指導1.估計方程若要進行多重共線性的檢驗與修正,首先要建立基本的回歸模型。按照第六章所講述內容,建立回歸模型的命令如下:usec:\data\lvyou.dta,clearregressYX1X2X3X4X5執(zhí)行建立回歸的命令,可以得到如圖7.7所示的回歸結果,通過判斷發(fā)現(xiàn):整個模型的擬合優(yōu)度較高,但是變量X1和X5未通過t檢驗,且X5的系數(shù)為負,與常理違背,因為在通常情況下,隨著鐵路里程的增加,交通更加方便,所以旅游收入應該增加。綜上所述,可以初步認為該模型存在多重共線性。三、實驗操作指導192.多重共線性檢驗多重共線性的檢驗通常采取兩種方法,一種是計算膨脹因子,一種是計算變量之間的相關系數(shù),下面將會詳細介紹。(1)計算膨脹因子的命令為:estatvif[,uncentered]在這個命令語句中,estatvif是計算膨脹因子的命令語句,uncentered選項通常使用在沒有常數(shù)項的模型中。在本實驗中,在回歸之后輸入此命令,就可得到如圖7.8所示的膨脹因子數(shù)值。結果顯示該模型的膨脹因子的平均值為14.50,遠遠大于經(jīng)驗值2,膨脹因子最大值為20.06,遠遠大于經(jīng)驗值10,所以可以認為該模型存在嚴重的多重共線性。2.多重共線性檢驗20(2)計算相關系數(shù)的命令語句為:pwcorr[varlist][if][in][weight][,pwcorr_options]在這個命令語句中,pwcorr是計算相關系數(shù)的命令,varlist為將要計算相關系數(shù)的變量,if為條件語句,in為范圍語句,weight為權重語句,options選項如表7.1所示。(2)計算相關系數(shù)的命令語句為:21在本實驗中,可以通過計算變量X1、X2、X3、X4和X5之間的相關系數(shù)來判斷模型是否存在多重共線性,所使用的命令為:pwcorrX1X2X3X4X5這個命令語句顯示的相關系數(shù)矩陣如圖7.9所示,通過觀察可以得到解釋變量X1與X2、X4、X5之間,X2與X3、X4、X5之間,以及X4與X5之間的相關系數(shù)非常高,因此可以認為解釋變量之間存在較為嚴重的多重共線性。在本實驗中,可以通過計算變量X1、X2、X3、X4和X5之間223.逐步回歸法(1)手動逐步回歸法逐步回顧法的第一步是要分別擬合Y對每一個變量的回歸方程,從中選出擬合優(yōu)度最高的方程作為基礎方程。這個操作所使用到的命令為:regressYX1regressYX2regressYX3regressYX4regressYX5經(jīng)過這步操作,可以得到如表7.2所示的回歸結果,為了便于觀察,表7.2是根據(jù)Stata輸出結果整理而成的。表7.2內容顯示,擬合優(yōu)度的大小排列順序為X2>X5>X1>X4>X3,所以這時應將X2作為基礎解釋變量,然后將X5、X1、X4、X3分別加入回歸方程,進行逐步回歸。3.逐步回歸法23首先,將X5加入方程進行回歸,這時輸入的命令為:regressYX2X5結果如圖7.10所示,通過觀察發(fā)現(xiàn),X5的系數(shù)的p值為0.658,沒有通過檢驗,所以刪除解釋變量X5。接下來,將X1加入基本方程進行回歸,得到如圖7.11所示的回歸結果,結果顯示X1系數(shù)的p值為0.068,沒有通過檢驗,所以刪除。下面,將X4加入基本方程進行回歸,圖7.12顯示所有系數(shù)都通過了檢驗,所以基本方程得以擴展為X2和X4兩個解釋變量。最后,將解釋變量X3加入,以X2、X4、X3作為解釋變量進行回歸,這時得到最終結果如圖7.13所示,所有變量都通過了檢驗。首先,將X5加入方程進行回歸,這時輸入的命令為:24(2)自動逐步回歸法上述方法對于解釋變量較多的計量模型并不適用,所以Stata提供了直接進行分步回歸的命令,命令格式為:stepwise[,options]:command在這個命令語句中,stepwise是進行逐步回歸的命令,command為進行回歸分析或建立其他模型的命令,options選項顯示在表7.3中。(2)自動逐步回歸法25在運用stepwise命令時,需要特別注意的是搜尋的方法和順序,具體內容如表7.4所示。表7.4較為詳細地敘述了每種方法的內在含義和實際操作方法,所以用戶使用該命令時應根據(jù)研究需要進行選擇,或者通過幾種方法結果的對比確定最終的模型。在運用stepwise命令時,需要特別注意的是搜尋的方法和順26Stata與模型的設定課件27例如,利用這種逐步回歸的方法重復旅游業(yè)分析的建模過程中,如果采用前向搜尋法,需要輸入如下命令:stepwise,pe(0.05):regressYX1X2X3X4X5在這個命令語句中,stepwise是進行逐步回歸的命令語句,pe(0.05)是運用顯著性水平為5%的前向搜尋法,regressYX1X2X3X4X5則是指明要建立回歸模型。由于前向搜尋法和手動逐步回歸的計算方法一致,所以得到如圖7.14所示的結果與圖7.13所示的結果基本一致。但是如果使用其他方法則會得出不同的結果,所以用戶應當根據(jù)自身研究的需要進行慎重的選擇。例如,利用這種逐步回歸的方法重復旅游業(yè)分析的建模過程中,如果28實驗7-4極端數(shù)據(jù)的診斷與處理一、實驗基本原理實驗7-4極端數(shù)據(jù)的診斷與處理一、實驗基本原理29二、實驗數(shù)據(jù)和實驗內容根據(jù)統(tǒng)計資料得到了美國汽車產(chǎn)業(yè)的橫截面數(shù)據(jù)(1978年),變量主要包括:price=汽車的價格,mpg=每加侖油所行駛的英里數(shù),weight=汽車的重量,foreign表示是否是進口車,如果foreign=0代表是國產(chǎn)車,如果foreign=1代表是進口車。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“usaauto.dta”工作文件中。利用usaauto數(shù)據(jù),以price為因變量,mpg、weight和foreign為自變量建立回歸模型,找出樣本數(shù)據(jù)中存在的極端數(shù)據(jù)。二、實驗數(shù)據(jù)和實驗內容30三、實驗操作指導進行極端數(shù)據(jù)的檢驗通常用到的是一組命令,這組命令顯示如下:regressyx1x2

……predictlev,leveragegsort–levsumlevlistin1/i在這組命令語句中,第一個命令語句的作用是以y為因變量,x1、x2

……為自變量建立回歸分析;第二個命令語句的作用是計算出所有觀測數(shù)據(jù)的lev值;第三個命令語句的作用是將lev值降序排列;第四個命令語句的作用是計算出lev值的極值與平均值,從而便于比較;第五個命令語句的作用是從大到小列出lev值第1到第i個觀測值,以便處理。三、實驗操作指導31例如,在美國汽車數(shù)據(jù)分析中,建立如下回歸模型之后,分析一下是否存在極端值所使用到的命令為:regresspricempgweightforeignpredictlev,leveragegsort–levsumlevlistin1/3這組命令的詳細含義已做介紹,這里不再贅述,其功能簡言之就是建立回歸模型之后,計算lev值,并將由大到小前3位的數(shù)據(jù)顯示出來,執(zhí)行結果如圖7.15所示。在結果中可以看到lev值的均值為0.0541,而最大的lev值為0.3001,所以該觀測值有可能為極端數(shù)據(jù),可以采取進一步方法進行處理,從而保證模型的精確性。處理的方法一般有兩種,一種方法為直接去掉極端值,另一種方法為選擇其他更為適合恰當?shù)哪P瓦M行回歸分析。例如,在美國汽車數(shù)據(jù)分析中,建立如下回歸模型之后,32實驗7-5虛擬變量的處理一、實驗基本原理對于定性數(shù)據(jù)或分類數(shù)據(jù)而言,通常并不能將其直接納入模型中進行回歸分析,因為這樣的分析并不符合經(jīng)濟學理論,所以這時需要引入虛擬變量進行處理。一般情況下,如果分類變量總共有M類,為了避免多重共線性的出現(xiàn),通常只引入M-1個虛擬變量。下面將會通過一個簡單的例子,來介紹一下引入虛擬變量后,模型的實際變化。實驗7-5虛擬變量的處理一、實驗基本原理33Stata與模型的設定課件34二、實驗數(shù)據(jù)和實驗內容根據(jù)統(tǒng)計資料得到了中國1978—2006年的消費數(shù)據(jù),變量主要包括:year=年份,c=人均消費(單位:元),y=人均國民收入(單位:元),c_ratio=消費收入比。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“consumption_china.dta”工作文件中。利用此數(shù)據(jù),估計中國的消費函數(shù),并引入虛擬變量,使得在1992年前后的模型截距和斜率都不相同。二、實驗數(shù)據(jù)和實驗內容35三、實驗操作指導為了便于比較,首先生成整個時期中不含虛擬變量的消費函數(shù)方程,所使用到的命令為:regresscy得到如圖7.16所示的回歸結果,這個回歸所形成的模型為c=188.588+0.3977y如果認為在1992年,南巡講話導致了經(jīng)濟結構的變動,這時需要引入虛擬變量將模型分成兩段進行回歸,步驟如下:第一步,生成虛擬變量,所使用的命令為:generatedummy=0replacedummy=1ifyear>=1992在這組命令中,第一個命令的作用是生成虛擬變量dummy,使其值全部為0;第二個的命令的作用就是將1992年以后的dummy值替換為1,這時就完成了虛擬變量的設置。三、實驗操作指導36第二步,生成虛擬變量dummy和解釋變量y的互動項,所使用的命令為:generatedummy_y=dummy*y這個命令的作用就是生成互動項dummy_y,使其值為變量dummy和變量y的乘積。第三步,將虛擬變量納入回歸方程進行估計,所使用的命令為:regresscydummydummy_y執(zhí)行結果如圖7.17所示,這時得到的模型為:這個模型是為了講解虛擬變量的實際使用方法,暫不考慮某些系數(shù)不能通過檢驗的情況。通過引入虛擬變量發(fā)現(xiàn),模型的截距和斜率都發(fā)生了變化。在用戶實際研究過程中,可以根據(jù)需要引入虛擬變量,進行變斜率、變截距以及二者相結合的模型變化。第二步,生成虛擬變量dummy和解釋變量y的互動項,所使用的37實驗7-6經(jīng)濟結構變動的Chow檢驗一、實驗基本原理在時間序列模型之中,需要十分注重模型系數(shù)的穩(wěn)定性,如果沒有考慮到結構變動,將會造成較為嚴重的模型設定誤差。Chow檢驗提供了一個較為嚴謹?shù)臋z驗經(jīng)濟結構變動的方法。例如,在時期t1和t2中,認為存在t3時刻為一個經(jīng)濟結構變動點,這時可以通過三個回歸來確定該點是否是結構變動點。實驗7-6經(jīng)濟結構變動的Chow檢驗一、實驗基本原理38Stata與模型的設定課件39二、實驗數(shù)據(jù)和實驗內容根據(jù)統(tǒng)計資料得到了中國1978—2006年的消費數(shù)據(jù),變量主要包括:year=年份,c=人均消費(單位:元),y=人均國民收入(單位:元),c_ratio=消費收入比。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“consumption_china.dta”工作文件中。利用此數(shù)據(jù),估計中國的消費函數(shù),并檢驗中國的消費函數(shù)是否在1992年鄧小平“南巡”以后(含1992年)發(fā)生了結構變化。二、實驗數(shù)據(jù)和實驗內容40三、實驗操作指導1.手動法進行Chow檢驗了解了Chow檢驗的基本原理之后,就可以進行檢驗了,檢驗的方法就是分別進行三次回歸,下面將會以中國消費函數(shù)為例詳細介紹整個操作過程,檢驗中國的消費函數(shù)是否在1992年以后發(fā)生了結構變化:(1)首先生成整個時期的回歸方程,然后計算出這時的殘差平方和,這時需要輸入的命令為:regresscypredicte,residualgena=e^2egenb=sum(a)第一個命令的作用是生成消費函數(shù)第二個命令的作用是生成殘差序列;第三個命令的作用是生成序列a,使其值為殘差平方;第四個命令的作用是生成變量b,使其值為序列a的和,即殘差平方和,也就是實驗原理中所指的三、實驗操作指導41(2)其次生成1992年以前序列的回歸方程,然后計算出這前半段時期的殘差平方和,這時需要輸入的命令為:regresscyifyear<1992predicte1ifyear<1992,residualgena1=e1^2egenb1=sum(a1)第一個命令的作用是生成1992年之前的消費函數(shù)第二個命令的作用是生成殘差序列e1;第三個命令的作用是生成序列a1,使其值為殘差平方;第四個命令的作用是生成變量b1,使其值為序列a1的和,即殘差平方和,也就是實驗原理中所指的(2)其次生成1992年以前序列的回歸方程,然后計算出這前半42(3)生成1992年以后序列的回歸方程,然后計算出這后半段時期的殘差平方和,這時需要輸入的命令為:regresscyifyear>=1992predicte2ifyear>=1992,residualgena2=e2^2egenb2=sum(a2)第一個命令的作用是生成1992年之后的消費函數(shù)第二個命令的作用是生成殘差序列e2;第三個命令的作用是生成序列a2,使其值為殘差平方;第四個命令的作用是生成變量b2,使其值為序列a2的和,即殘差平方和,也就是實驗原理中所指的(3)生成1992年以后序列的回歸方程,然后計算出這后半段時43(4)最后計算F統(tǒng)計量的值,并與臨界值作比較,這時需要輸入的命令為:genf=((b-b1-b2)/(2))/((b1+b2)/(29-2*2))sumf第一個命令的作用就是將所有計算的數(shù)值帶入公式計算出F統(tǒng)計量的值,第二個命令的作用就是列出F的值,命令執(zhí)行的結果如圖7.18所示。我們知道在95%的置信水平下,自由度為2和25的F值為3.39,所以檢驗值大于臨界值,拒絕原假設,應當認為存在結構變化。(4)最后計算F統(tǒng)計量的值,并與臨界值作比較,這時需要輸入的44(2)自動進行Chow檢驗在一般的Stata默認安裝程序中并不存在Chow檢驗的命令程序,但是有些用戶編制了Chow檢驗的程序,需要用戶自行下載安裝,這時需要在命令窗口中輸入如下命令:finditchow這時,將會顯示許多下載該命令的地址,一般點擊第一個就可以安裝完成了。Chow檢驗的命令語句為:chowvarlist[weight][ifexp][inrange][,chow(sample-list)]在這個命令語句中,chow是進行檢驗的命令,varlist是指將要進行Chow檢驗的變量名稱,weight是權重語句,ifexp是條件語句,inrange是范圍語句,chow(sample-list)需要指明檢驗的區(qū)間,也就是結構變動點所在的位置。例如,利用consumption_china數(shù)據(jù),檢驗1992年是否為結構變化點的命令為:chowcy,chow(year>1991)在這個命令語句中,chowcy說明要對變量c和y進行檢驗,chow(year>1991)說明結構變動可能出現(xiàn)在1992年,命令執(zhí)行的結果同手動法一致。(2)自動進行Chow檢驗45習題1.利用wage2.dta的數(shù)據(jù),分別運用Link方法和Ramsey方法,檢驗回歸模型是否遺漏了重要的解釋變量。2.利用wage2.dta的數(shù)據(jù),運用信息準則的方法判斷模型和模型哪一個更為合適,數(shù)據(jù)同第1題。3.利用usaauto.dta的數(shù)據(jù),判斷回歸模型是否具有多重共線性,如果存在,請運用逐步回歸法進行修正。習題1.利用wage2.dta的數(shù)據(jù),分別運用Link方法和464.利用wage2.dta的數(shù)據(jù),建立回歸模型并檢驗是否存在極端數(shù)據(jù),數(shù)據(jù)同第1題。5.利用wage2.dta的數(shù)據(jù),以模型為基礎,按照性別建立虛擬變量,并將該變量及其與其他變量的交互項加入回歸模型中重新進行估計,數(shù)據(jù)同第1題。6.利用water.dta的數(shù)據(jù),建立模型并利用Chow檢驗驗證在2000年自來水市場化改革后,自來水產(chǎn)業(yè)結構是否發(fā)生了變化,4.利用wage2.dta的數(shù)據(jù),建立回歸模型47演講完畢,謝謝觀看!演講完畢,謝謝觀看!48第七章Stata與模型的設定第七章Stata與模型的設定49主要內容:1、遺漏變量的檢驗2、解釋變量個數(shù)的選擇3、多重共線性與逐步回歸法4、極端數(shù)據(jù)的診斷與處理5、虛擬變量的處理6、經(jīng)濟結構變動的Chow檢驗主要內容:1、遺漏變量的檢驗50實驗7-1遺漏變量的檢驗一、實驗基本原理實驗7-1遺漏變量的檢驗一、實驗基本原理51二、實驗數(shù)據(jù)和實驗內容根據(jù)統(tǒng)計資料得到了美國工資的橫截面數(shù)據(jù),變量主要包括:wage=工資,educ=受教育年限,exper=工作經(jīng)驗年限,tenure=任職年限,lwage=工資的對數(shù)值。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“wage1.dta”工作文件中。利用wage1的數(shù)據(jù),分別利用Link方法和Ramsey方法檢驗模型是否遺漏了重要的解釋變量。二、實驗數(shù)據(jù)和實驗內容52三、實驗操作指導1.使用Link方法檢驗遺漏變量Link方法進行檢驗的基本命令語句為:linktest[if][in][,cmd_options]在這個命令語句中,linktest是進行Link檢驗的基本命令,if是表示條件的命令語句,in是范圍語句,cmd_options表示Link檢驗的選項應該與所使用的估計方法的選項一致,例如檢驗之前使用的回歸regress命令,則此處的選項應與regress的選項一致。三、實驗操作指導53例如,利用wage1的數(shù)據(jù),檢驗模型是否遺漏了重要的解釋變量,應該輸入以下命令:usec:\data\wage1.dta,clearreglwageeducexpertenurelinktest第一個命令表示打開數(shù)據(jù)文件wage1,第二個命令語句是對模型進行回歸估計,第三個命令就是進行遺漏變量的Link檢驗,檢驗結果如圖7.1所示。從第二個表格中,可以看到hatsq項的p值為0.018,拒絕了hatsq系數(shù)為零的假設,即說明被解釋變量lwage的擬合值的平方項具有解釋能力,所以可以得出結論原模型可能遺漏了重要的解釋變量。例如,利用wage1的數(shù)據(jù),檢驗模型54為了進一步驗證添加重要變量是否會改變Link檢驗的結果,我們生成受教育年限educ和工作經(jīng)驗年限exper的平方項,重新進行回歸并進行檢驗,這時輸入的命令如下:geneduc2=educ^2genexper2=exper^2reglwageeducexpertenureeduc2exper2linktest第一個命令語句的作用是生成變量educ2,使其值為變量educ的平方;第二個命令語句的作用是生成變量exper2,使其值為變量exper的平方;第三個命令語句的作用是對進行回歸估計;第四個命令就是進行遺漏變量的Link檢驗,檢驗結果如圖7.2所示。為了進一步驗證添加重要變量是否會改變Link檢驗的結果,我們552.使用Ramsey方法檢驗遺漏變量Ramsey方法進行檢驗的基本命令語句為:estatovtest[,rhs]在這個命令語句中,estatovtest是進行Ramsey檢驗的命令語句,如果設定rhs,則在檢驗過程中使用解釋變量,如果不設定rhs,則在檢驗中使用被解釋變量的擬合值。例如,利用wage1的數(shù)據(jù),使用Ramsey方法檢驗模型是否遺漏了重要的解釋變量,應該輸入以下命令:usec:\data\wage1.dta,clearreglwageeducexpertenureestatovtest2.使用Ramsey方法檢驗遺漏變量56在這組命令語句中,第一個命令的功能是打開數(shù)據(jù)文件,第二個命令是對模型進行回歸估計,第三個命令就是進行遺漏變量的Ramsey檢驗,檢驗結果如圖7.3所示。在圖7.3中,第一個圖表仍然是回歸結果,第二部分則是Ramsey檢驗的結果,不難發(fā)現(xiàn)Ramsey檢驗的原假設是模型不存在遺漏變量,檢驗的p值為0.0048,拒絕原假設,即認為原模型存在遺漏變量。在這組命令語句中,第一個命令的功能是打開數(shù)據(jù)文件,第二個命令57為了進一步驗證添加重要變量是否會改變Ramsey檢驗的結果,我們采取Link檢驗中的方法,生成受教育年限educ和工作經(jīng)驗年限exper的平方項,重新進行回歸并進行檢驗,這時輸入的命令如下:geneduc2=educ^2genexper2=exper^2reglwageeducexpertenureeduc2exper2estatovtest這里不再贅述這些命令語句的含義,調整之后的檢驗結果如圖7.4所示,可以發(fā)現(xiàn)此時檢驗的p值為0.5404,無法拒絕原假設,即認為模型不再存在遺漏變量。為了進一步驗證添加重要變量是否會改變Ramsey檢驗的結果,58實驗7-2解釋變量個數(shù)的選擇一、實驗基本原理好的經(jīng)濟理論的標準通常是希望通過更為簡潔的模型來更加精確地描述復雜的經(jīng)濟現(xiàn)象,但是這兩個目標通常是矛盾的,因為通過增加解釋變量的個數(shù)可以提高模型的精確程度,但是同時也犧牲了模型的簡潔性。因此,在現(xiàn)實的經(jīng)濟研究過程中,通常使用信息準則來確定解釋變量的個數(shù),較為常用的信息準則有兩個:(1)赤池信息準則,又稱為AIC準則,其基本思想是通過選擇解釋變量的個數(shù),使得如下目標函數(shù)最小。實驗7-2解釋變量個數(shù)的選擇一、實驗基本原理59

在這個公式中,e代表殘差序列,n代表樣本數(shù)量,K代表解釋變量的個數(shù)。通過這個目標函數(shù)可以看出,第一項是對擬合優(yōu)度的獎勵,即盡可能地使殘差平方和變小,第二項是對解釋變量個數(shù)增多的懲罰,因為目標函數(shù)是解釋變量個數(shù)的增函數(shù)。(2)貝葉斯信息準則,又稱為BIC準則,其基本思想是通過選擇解釋變量的個數(shù),使得如下目標函數(shù)最小。在這個公式中,e代表殘差序列,n代表樣本數(shù)量,K代表解釋變量的個數(shù)。通過這個目標函數(shù)可以看出,BIC準則與AIC準則的唯一區(qū)別就是K的權重不同,一般來說ln(n)>2,所以BIC更加注重模型的簡潔性。在這個公式中,e代表殘差序列,n代表樣本數(shù)量60二、實驗數(shù)據(jù)和實驗內容:根據(jù)統(tǒng)計資料得到了美國工資的橫截面數(shù)據(jù),變量主要包括:wage=工資,educ=受教育年限,exper=工作經(jīng)驗年限,tenure=任職年限,lwage=工資的對數(shù)值。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“wage1.dta”工作文件中。利用wage1的數(shù)據(jù),來確定以下兩個模型:模型和模型哪個更為合理(其中educ2和exper2分別為educ和exper的平方項)。二、實驗數(shù)據(jù)和實驗內容:61三、實驗操作指導使用信息準則,對模型進行檢驗的命令如下:estatic[,n(#)]在這個命令語句中,estatic是進行檢驗的命令語句,選項n(#)的功能是指定BIC準則中的n值,一般使用默認值。例如,利用wage1的數(shù)據(jù),獲得模型的AIC和BIC值,應該輸入以下命令:usec:\data\wage1.dta,clearreglwageeducexpertenureestatic第一個命令表示打開數(shù)據(jù)文件wage1,第二個命令語句是對模型進行回歸估計,第三個命令就是進行信息準則值的計算,計算結果如圖7.5所示,AIC值為635.10,BIC值為652.16。三、實驗操作指導62為了對比分析,我們仍然采取Link檢驗中的方法,生成受教育年限educ和工作經(jīng)驗年限exper的平方項,建立新的模型重新對其進行回歸并計算,這時輸入的命令如下:geneduc2=educ^2genexper2=exper^2reglwageeducexpertenureeduc2exper2estatic這里不再贅述這些命令語句的含義,調整之后的計算結果如圖7.6所示,可以發(fā)現(xiàn)此時計算的AIC值為583.66,BIC值為609.25。通過這兩個模型信息準則值的對比分析,可以得出結論,第二個模型的信息準則值更小,所以此模型優(yōu)于第一個模型。為了對比分析,我們仍然采取Link檢驗中的方法,生成受教育年63實驗7-3多重共線性與逐步回歸法一、實驗基本原理多重共線性問題在多元線性回歸分析中是很常見的,其導致的直接后果是方程回歸系數(shù)估計的標準誤差變大,系數(shù)估計值的精度降低等。多重共線性的問題對于Stata軟件來說并不顯著,因為Stata會自動剔除完全的多重共線性,但是出于知識的完整性,這里還是介紹一下Stata對于多重共線性的識別和處理方法。多重共線性的診斷方法主要有:(1)直觀上說:當模型的擬合優(yōu)度非常高且通過F檢驗,但多數(shù)解釋變量都不顯著,甚至解釋變量系數(shù)符號相反時,可能存在多重共線性。(2)對由解釋變量所組成的序列組進行相關分析時,如果有些變量之間的相關系數(shù)很高,則也反映出可能存在多重共線性。(3)使用命令estatvif,對膨脹因子進行計算,經(jīng)驗上當VIF的均值>=2且VIF的最大值接近或者超過10時,通常認為有較為嚴重的多重共線性。實驗7-3多重共線性與逐步回歸法一、實驗基本原理64當確認模型存在多重共線性時,通常有兩種解決方法消除其影響:一種是收集更多的數(shù)據(jù),增大樣本容量;另一種是通過逐步回歸,改進模型的形式。在現(xiàn)實研究過程中,增大樣本容量的操作不易執(zhí)行,所以逐步回歸法應用更為廣泛。逐步回歸法的基本原理是:先分別擬合被解釋變量對于每一個解釋變量的一元回歸,并將各回歸方程的擬合優(yōu)度按照大小順序排列,然后將擬合優(yōu)度最大的解釋變量作為基礎變量,然后逐漸將其他解釋變量加入模型中并同時觀測t檢驗值的變化,如果t檢驗顯著則保留該變量,否則去除,不斷重復此過程直到加入所有顯著的解釋變量。當確認模型存在多重共線性時,通常有兩種解決方法消除其影響:一65二、實驗數(shù)據(jù)和實驗內容根據(jù)統(tǒng)計資料得到了某市旅游業(yè)的相關數(shù)據(jù),變量主要包括:Y=旅游收入(單位:萬元),X1=某市旅游人數(shù)(單位:人),X2=城鎮(zhèn)居民人均旅游支出(單位:元),X3=農村居民人均旅游支出(單位:元),X4=公路里程(單位:公里),X5=鐵路里程(單位:公里)。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“l(fā)vyou.dta”工作文件中。利用lvyou數(shù)據(jù)估計方程,判斷是否存在多重共線性,若存在,采用逐步回歸法消除多重共線性。二、實驗數(shù)據(jù)和實驗內容66三、實驗操作指導1.估計方程若要進行多重共線性的檢驗與修正,首先要建立基本的回歸模型。按照第六章所講述內容,建立回歸模型的命令如下:usec:\data\lvyou.dta,clearregressYX1X2X3X4X5執(zhí)行建立回歸的命令,可以得到如圖7.7所示的回歸結果,通過判斷發(fā)現(xiàn):整個模型的擬合優(yōu)度較高,但是變量X1和X5未通過t檢驗,且X5的系數(shù)為負,與常理違背,因為在通常情況下,隨著鐵路里程的增加,交通更加方便,所以旅游收入應該增加。綜上所述,可以初步認為該模型存在多重共線性。三、實驗操作指導672.多重共線性檢驗多重共線性的檢驗通常采取兩種方法,一種是計算膨脹因子,一種是計算變量之間的相關系數(shù),下面將會詳細介紹。(1)計算膨脹因子的命令為:estatvif[,uncentered]在這個命令語句中,estatvif是計算膨脹因子的命令語句,uncentered選項通常使用在沒有常數(shù)項的模型中。在本實驗中,在回歸之后輸入此命令,就可得到如圖7.8所示的膨脹因子數(shù)值。結果顯示該模型的膨脹因子的平均值為14.50,遠遠大于經(jīng)驗值2,膨脹因子最大值為20.06,遠遠大于經(jīng)驗值10,所以可以認為該模型存在嚴重的多重共線性。2.多重共線性檢驗68(2)計算相關系數(shù)的命令語句為:pwcorr[varlist][if][in][weight][,pwcorr_options]在這個命令語句中,pwcorr是計算相關系數(shù)的命令,varlist為將要計算相關系數(shù)的變量,if為條件語句,in為范圍語句,weight為權重語句,options選項如表7.1所示。(2)計算相關系數(shù)的命令語句為:69在本實驗中,可以通過計算變量X1、X2、X3、X4和X5之間的相關系數(shù)來判斷模型是否存在多重共線性,所使用的命令為:pwcorrX1X2X3X4X5這個命令語句顯示的相關系數(shù)矩陣如圖7.9所示,通過觀察可以得到解釋變量X1與X2、X4、X5之間,X2與X3、X4、X5之間,以及X4與X5之間的相關系數(shù)非常高,因此可以認為解釋變量之間存在較為嚴重的多重共線性。在本實驗中,可以通過計算變量X1、X2、X3、X4和X5之間703.逐步回歸法(1)手動逐步回歸法逐步回顧法的第一步是要分別擬合Y對每一個變量的回歸方程,從中選出擬合優(yōu)度最高的方程作為基礎方程。這個操作所使用到的命令為:regressYX1regressYX2regressYX3regressYX4regressYX5經(jīng)過這步操作,可以得到如表7.2所示的回歸結果,為了便于觀察,表7.2是根據(jù)Stata輸出結果整理而成的。表7.2內容顯示,擬合優(yōu)度的大小排列順序為X2>X5>X1>X4>X3,所以這時應將X2作為基礎解釋變量,然后將X5、X1、X4、X3分別加入回歸方程,進行逐步回歸。3.逐步回歸法71首先,將X5加入方程進行回歸,這時輸入的命令為:regressYX2X5結果如圖7.10所示,通過觀察發(fā)現(xiàn),X5的系數(shù)的p值為0.658,沒有通過檢驗,所以刪除解釋變量X5。接下來,將X1加入基本方程進行回歸,得到如圖7.11所示的回歸結果,結果顯示X1系數(shù)的p值為0.068,沒有通過檢驗,所以刪除。下面,將X4加入基本方程進行回歸,圖7.12顯示所有系數(shù)都通過了檢驗,所以基本方程得以擴展為X2和X4兩個解釋變量。最后,將解釋變量X3加入,以X2、X4、X3作為解釋變量進行回歸,這時得到最終結果如圖7.13所示,所有變量都通過了檢驗。首先,將X5加入方程進行回歸,這時輸入的命令為:72(2)自動逐步回歸法上述方法對于解釋變量較多的計量模型并不適用,所以Stata提供了直接進行分步回歸的命令,命令格式為:stepwise[,options]:command在這個命令語句中,stepwise是進行逐步回歸的命令,command為進行回歸分析或建立其他模型的命令,options選項顯示在表7.3中。(2)自動逐步回歸法73在運用stepwise命令時,需要特別注意的是搜尋的方法和順序,具體內容如表7.4所示。表7.4較為詳細地敘述了每種方法的內在含義和實際操作方法,所以用戶使用該命令時應根據(jù)研究需要進行選擇,或者通過幾種方法結果的對比確定最終的模型。在運用stepwise命令時,需要特別注意的是搜尋的方法和順74Stata與模型的設定課件75例如,利用這種逐步回歸的方法重復旅游業(yè)分析的建模過程中,如果采用前向搜尋法,需要輸入如下命令:stepwise,pe(0.05):regressYX1X2X3X4X5在這個命令語句中,stepwise是進行逐步回歸的命令語句,pe(0.05)是運用顯著性水平為5%的前向搜尋法,regressYX1X2X3X4X5則是指明要建立回歸模型。由于前向搜尋法和手動逐步回歸的計算方法一致,所以得到如圖7.14所示的結果與圖7.13所示的結果基本一致。但是如果使用其他方法則會得出不同的結果,所以用戶應當根據(jù)自身研究的需要進行慎重的選擇。例如,利用這種逐步回歸的方法重復旅游業(yè)分析的建模過程中,如果76實驗7-4極端數(shù)據(jù)的診斷與處理一、實驗基本原理實驗7-4極端數(shù)據(jù)的診斷與處理一、實驗基本原理77二、實驗數(shù)據(jù)和實驗內容根據(jù)統(tǒng)計資料得到了美國汽車產(chǎn)業(yè)的橫截面數(shù)據(jù)(1978年),變量主要包括:price=汽車的價格,mpg=每加侖油所行駛的英里數(shù),weight=汽車的重量,foreign表示是否是進口車,如果foreign=0代表是國產(chǎn)車,如果foreign=1代表是進口車。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“usaauto.dta”工作文件中。利用usaauto數(shù)據(jù),以price為因變量,mpg、weight和foreign為自變量建立回歸模型,找出樣本數(shù)據(jù)中存在的極端數(shù)據(jù)。二、實驗數(shù)據(jù)和實驗內容78三、實驗操作指導進行極端數(shù)據(jù)的檢驗通常用到的是一組命令,這組命令顯示如下:regressyx1x2

……predictlev,leveragegsort–levsumlevlistin1/i在這組命令語句中,第一個命令語句的作用是以y為因變量,x1、x2

……為自變量建立回歸分析;第二個命令語句的作用是計算出所有觀測數(shù)據(jù)的lev值;第三個命令語句的作用是將lev值降序排列;第四個命令語句的作用是計算出lev值的極值與平均值,從而便于比較;第五個命令語句的作用是從大到小列出lev值第1到第i個觀測值,以便處理。三、實驗操作指導79例如,在美國汽車數(shù)據(jù)分析中,建立如下回歸模型之后,分析一下是否存在極端值所使用到的命令為:regresspricempgweightforeignpredictlev,leveragegsort–levsumlevlistin1/3這組命令的詳細含義已做介紹,這里不再贅述,其功能簡言之就是建立回歸模型之后,計算lev值,并將由大到小前3位的數(shù)據(jù)顯示出來,執(zhí)行結果如圖7.15所示。在結果中可以看到lev值的均值為0.0541,而最大的lev值為0.3001,所以該觀測值有可能為極端數(shù)據(jù),可以采取進一步方法進行處理,從而保證模型的精確性。處理的方法一般有兩種,一種方法為直接去掉極端值,另一種方法為選擇其他更為適合恰當?shù)哪P瓦M行回歸分析。例如,在美國汽車數(shù)據(jù)分析中,建立如下回歸模型之后,80實驗7-5虛擬變量的處理一、實驗基本原理對于定性數(shù)據(jù)或分類數(shù)據(jù)而言,通常并不能將其直接納入模型中進行回歸分析,因為這樣的分析并不符合經(jīng)濟學理論,所以這時需要引入虛擬變量進行處理。一般情況下,如果分類變量總共有M類,為了避免多重共線性的出現(xiàn),通常只引入M-1個虛擬變量。下面將會通過一個簡單的例子,來介紹一下引入虛擬變量后,模型的實際變化。實驗7-5虛擬變量的處理一、實驗基本原理81Stata與模型的設定課件82二、實驗數(shù)據(jù)和實驗內容根據(jù)統(tǒng)計資料得到了中國1978—2006年的消費數(shù)據(jù),變量主要包括:year=年份,c=人均消費(單位:元),y=人均國民收入(單位:元),c_ratio=消費收入比。完整的數(shù)據(jù)在本書附帶光盤的data文件夾的“consumption_china.dta”工作文件中。利用此數(shù)據(jù),估計中國的消費函數(shù),并引入虛擬變量,使得在1992年前后的模型截距和斜率都不相同。二、實驗數(shù)據(jù)和實驗內容83三、實驗操作指導為了便于比較,首先生成整個時期中不含虛擬變量的消費函數(shù)方程,所使用到的命令為:regresscy得到如圖7.16所示的回歸結果,這個回歸所形成的模型為c=188.588+0.3977y如果認為在1992年,南巡講話導致了經(jīng)濟結構的變動,這時需要引入虛擬變量將模型分成兩段進行回歸,步驟如下:第一步,生成虛擬變量,所使用的命令為:generatedummy=0replacedummy=1ifyear>=1992在這組命令中,第一個命令的作用是生成虛擬變量dummy,使其值全部為0;第二個的命令的作用就是將1992年以后的dummy值替換為1,這時就完成了虛擬變量的設置。三、實驗操作指導84第二步,生成虛擬變量dummy和解釋變量y的互動項,所使用的命令為:generatedummy_y=dummy*y這個命令的作用就是生成互動項dummy_y,使其值為變量dummy和變量y的乘積。第三步,將虛擬變量納入回歸方程進行估計,所使用的命令為:regresscydummydummy_y執(zhí)行結果如圖7.17所示,這時得到的模型為:這個模型是為了講解虛擬變量的實際使用方法,暫不考慮某些系數(shù)不能通過檢驗的情況。通過引入虛擬變量發(fā)現(xiàn),模型的截距和斜率都發(fā)生了變化。在用戶實際研究過程中,可以根據(jù)需要引入虛擬變量,進行變斜率、變截距以及二者相結合的模型變化。第二步,生成虛擬變量dummy和解釋變量y的互動項,所使用的85實驗7-6經(jīng)濟結構變動的Chow檢驗一、實驗基本原理在時間序列模型之中,需要十分注重模型系數(shù)的穩(wěn)定性,如果沒有考慮到結構變動,將會造成較為嚴重的模型設定誤差。Chow檢驗提供了一個較為嚴謹?shù)臋z驗經(jīng)濟結構變動的方法。例如,在時期t1和t2中,認為存在t3時刻為一個經(jīng)濟結構變動點,這時可以通過三個回歸來確定該點是否是結構變動點。實驗7-6經(jīng)濟結構變動的Chow檢驗一、實驗基本原理86Stata與模型的設定課件87二、實驗數(shù)據(jù)和實驗內容根據(jù)統(tǒng)計資料得到了中國1978—2006年的消費數(shù)據(jù),變量主要包括:year=年份,c=人均消費(單位:元),y=人均國民收入(單位:元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論