“合肥十校”聯(lián)考2023年中考數(shù)學最后沖刺濃縮精華卷含解析_第1頁
“合肥十校”聯(lián)考2023年中考數(shù)學最后沖刺濃縮精華卷含解析_第2頁
“合肥十校”聯(lián)考2023年中考數(shù)學最后沖刺濃縮精華卷含解析_第3頁
“合肥十校”聯(lián)考2023年中考數(shù)學最后沖刺濃縮精華卷含解析_第4頁
“合肥十校”聯(lián)考2023年中考數(shù)學最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=()A. B.1 C. D.2.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或13.已知m=,n=,則代數(shù)式的值為()A.3 B.3 C.5 D.94.若a是一元二次方程x2﹣x﹣1=0的一個根,則求代數(shù)式a3﹣2a+1的值時需用到的數(shù)學方法是()A.待定系數(shù)法B.配方C.降次D.消元5.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算6.如圖,O為原點,點A的坐標為(3,0),點B的坐標為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.7.在實數(shù)π,0,,﹣4中,最大的是()A.π B.0 C. D.﹣48.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(

).A. B.- C.- D.9.已知關(guān)于x的不等式組至少有兩個整數(shù)解,且存在以3,a,7為邊的三角形,則a的整數(shù)解有()A.4個 B.5個 C.6個 D.7個10.如圖,已知反比函數(shù)的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結(jié)AD、OC,若△ABO的周長為,AD=2,則△ACO的面積為()A. B.1 C.2 D.411.下列圖形中,不是軸對稱圖形的是()A. B. C. D.12.小昱和阿帆均從同一本書的第1頁開始,逐頁依順序在每一頁上寫一個數(shù).小昱在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加2;阿帆在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加1.若小昱在某頁寫的數(shù)為101,則阿帆在該頁寫的數(shù)為何?()A.350 B.351 C.356 D.358二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖所示,點A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點A1、A2、A3作y軸的平行線,與反比例函數(shù)y=(x>0)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3作x軸的平行線,分別與y軸交于點C1、C2、C3,連接OB1、OB2、OB3,若圖中三個陰影部分的面積之和為,則k=.14.等腰梯形是__________對稱圖形.15.定義:直線l1與l2相交于點O,對于平面內(nèi)任意一點M,點M到直線l1,l2的距離分別為p、q,則稱有序?qū)崝?shù)對(p,q)是點M的“距離坐標”.根據(jù)上述定義,“距離坐標”是(1,2)的點的個數(shù)共有______個.16.如圖,中,,,,,平分,與相交于點,則的長等于_____.17.墊球是排球隊常規(guī)訓練的重要項目之一.如圖所示的數(shù)據(jù)是運動員張華十次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分.則運動員張華測試成績的眾數(shù)是_____.18.規(guī)定:,如:,若,則=__.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:÷,其中m是方程x2+2x-3=0的根.20.(6分)二次函數(shù)y=x2﹣2mx+5m的圖象經(jīng)過點(1,﹣2).(1)求二次函數(shù)圖象的對稱軸;(2)當﹣4≤x≤1時,求y的取值范圍.21.(6分)太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關(guān)注和重點發(fā)展的新興產(chǎn)業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同(即點D,F(xiàn)到地面的垂直距離相同),均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm(結(jié)果保留根號)22.(8分)灞橋區(qū)教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:(1)a=%,并補全條形圖.(2)在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?(3)如果該區(qū)共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數(shù)大約有多少?23.(8分)黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.(1)求A種,B種樹木每棵各多少元;(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.24.(10分)在“打造青山綠山,建設(shè)美麗中國”的活動中,某學校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?2輛A、B兩種型號客車作為交通工具,下表是租車公司提供給學校有關(guān)兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù).(1)設(shè)租用A型號客車x輛,租車總費用為y元,求y與x的函數(shù)解析式。(2)若要使租車總費用不超過19720元,一共有幾種租車方案?那種租車方案最省錢?25.(10分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,點D是邊BC上任意一點,連接AD,過點C作CE⊥AD于點E.(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長;(2)如圖2,過點C作CF⊥CE,且CF=CE,連接FE并延長交AB于點M,連接BF,求證:AM=BM.26.(12分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;(2)求證:(3)若BC=AB,求tan∠CDF的值.27.(12分)已知是關(guān)于的方程的一個根,則__

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

由旋轉(zhuǎn)的性質(zhì)得到AB=BE,根據(jù)菱形的性質(zhì)得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據(jù)三角函數(shù)的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結(jié)論.【詳解】如圖,連接AC交BE于點O,∵將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),菱形的性質(zhì),等邊三角形的判定與性質(zhì),解直角三角形的應(yīng)用等,熟練掌握和靈活運用相關(guān)的知識是解題的關(guān)鍵.2、D【解析】

當k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關(guān)鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.3、B【解析】

由已知可得:,=.【詳解】由已知可得:,原式=故選:B【點睛】考核知識點:二次根式運算.配方是關(guān)鍵.4、C【解析】

根據(jù)一元二次方程的解的定義即可求出答案.【詳解】由題意可知:a2-a-1=0,

∴a2-a=1,

或a2-1=a

∴a3-2a+1

=a3-a-a+1

=a(a2-1)-(a-1)

=a2-a+1

=1+1

=2

故選:C.【點睛】本題考查了一元二次方程的解,解題的關(guān)鍵是正確理解一元二次方程的解的定義.5、B【解析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【詳解】把△IBE繞B順時針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.6、D【解析】

如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.7、C【解析】

根據(jù)實數(shù)的大小比較即可得到答案.【詳解】解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案選C.【點睛】本題主要考查了實數(shù)的大小比較,解本題的要點在于統(tǒng)一根據(jù)二次根式的性質(zhì),把根號外的移到根號內(nèi),只需比較被開方數(shù)的大小.8、C【解析】分析:根據(jù)根與系數(shù)的關(guān)系可得出α+β=-、αβ=-3,將其代入=中即可求出結(jié)論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數(shù)的關(guān)系,牢記兩根之和等于-、兩根之積等于是解題的關(guān)鍵.9、A【解析】

依據(jù)不等式組至少有兩個整數(shù)解,即可得到a>5,再根據(jù)存在以3,a,7為邊的三角形,可得4<a<10,進而得出a的取值范圍是5<a<10,即可得到a的整數(shù)解有4個.【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個整數(shù)解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數(shù)解有4個,故選:A.【點睛】此題考查的是一元一次不等式組的解法和三角形的三邊關(guān)系的運用,求不等式組的解集應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.10、A【解析】

在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長,根據(jù)周長求出直角邊之和,設(shè)其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長,過D作DE垂直于x軸,得到E為OA中點,求出OE的長,在直角三角形DOE中,利用勾股定理求出DE的長,利用反比例函數(shù)k的幾何意義求出k的值,確定出三角形AOC面積即可.【詳解】在Rt△AOB中,AD=2,AD為斜邊OB的中線,∴OB=2AD=4,由周長為4+2,得到AB+AO=2,設(shè)AB=x,則AO=2-x,根據(jù)勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,過D作DE⊥x軸,交x軸于點E,可得E為AO中點,∴OE=OA=(-)(假設(shè)OA=+,與OA=-,求出結(jié)果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE?OE=-(+))×(-))=1.∴S△AOC=DE?OE=,故選A.【點睛】本題屬于反比例函數(shù)綜合題,涉及的知識有:勾股定理,直角三角形斜邊的中線性質(zhì),三角形面積求法,以及反比例函數(shù)k的幾何意義,熟練掌握反比例的圖象與性質(zhì)是解本題關(guān)鍵.11、A【解析】

觀察四個選項圖形,根據(jù)軸對稱圖形的概念即可得出結(jié)論.【詳解】根據(jù)軸對稱圖形的概念,可知:選項A中的圖形不是軸對稱圖形.故選A.【點睛】此題主要考查了軸對稱圖形,軸對稱圖形的關(guān)鍵是尋找對稱軸,對稱軸可使圖形兩部分折疊后重合.12、B【解析】

根據(jù)題意確定出小昱和阿帆所寫的數(shù)字,設(shè)小昱所寫的第n個數(shù)為101,根據(jù)規(guī)律確定出n的值,即可確定出阿帆在該頁寫的數(shù).【詳解】解:小昱所寫的數(shù)為1,3,5,1,…,101,…;阿帆所寫的數(shù)為1,8,15,22,…,設(shè)小昱所寫的第n個數(shù)為101,根據(jù)題意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,則阿帆所寫的第51個數(shù)為1+(51-1)×1=1+50×1=1+350=2.故選B.【點睛】此題考查了有理數(shù)的混合運算,弄清題中的規(guī)律是解本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】

先根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得到,再根據(jù)相似三角形的面積比等于相似比的平方,得到用含k的代數(shù)式表示3個陰影部分的面積之和,然后根據(jù)三個陰影部分的面積之和為,列出方程,解方程即可求出k的值.【詳解】解:根據(jù)題意可知,軸,設(shè)圖中陰影部分的面積從左向右依次為,則,,解得:k=2.故答案為1.考點:反比例函數(shù)綜合題.14、軸【解析】

根據(jù)軸對稱圖形的概念,等腰梯形是軸對稱圖形,且有1條對稱軸,即底邊的垂直平分線.【詳解】畫圖如下:結(jié)合圖形,根據(jù)軸對稱的定義及等腰梯形的特征可知,等腰梯形是軸對稱圖形.故答案為:軸【點睛】本題考查了關(guān)于軸對稱的定義,運用定義會進行判斷一個圖形是不是軸對稱圖形.15、4【解析】

根據(jù)“距離坐標”和平面直角坐標系的定義分別寫出各點即可.【詳解】距離坐標是(1,2)的點有(1,2),(-1,2),(-1,-2),(1,-2)共四個,所以答案填寫4.【點睛】本題考查了點的坐標,理解題意中距離坐標是解題的關(guān)鍵.16、3【解析】

如圖,延長CE、DE,分別交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等邊三角形,根據(jù)等腰直角三角形的性質(zhì)可知CG⊥AB,可求出AG的長,進而可得GH的長,根據(jù)含30°角的直角三角形的性質(zhì)可求出EH的長,根據(jù)DE=DH-EH即可得答案.【詳解】如圖,延長CE、DE,分別交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等邊三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB==8,AG=AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案為:3【點睛】本題考查等邊三角形的判定及性質(zhì)、等腰直角三角形的性質(zhì)及含30°角的直角三角形的性質(zhì),熟記30°角所對的直角邊等于斜邊的一半的性質(zhì)并正確作出輔助線是解題關(guān)鍵.17、1【解析】

根據(jù)眾數(shù)定義:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)可得答案.【詳解】運動員張華測試成績的眾數(shù)是1.故答案為1.【點睛】本題主要考查了眾數(shù),關(guān)鍵是掌握眾數(shù)定義.18、1或-1【解析】

根據(jù)a?b=(a+b)b,列出關(guān)于x的方程(2+x)x=1,解方程即可.【詳解】依題意得:(2+x)x=1,整理,得x2+2x=1,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-1.故答案是:1或-1.【點睛】用配方法解一元二次方程的步驟:①把原方程化為ax2+bx+c=0(a≠0)的形式;②方程兩邊同除以二次項系數(shù),使二次項系數(shù)為1,并把常數(shù)項移到方程右邊;③方程兩邊同時加上一次項系數(shù)一半的平方;④把左邊配成一個完全平方式,右邊化為一個常數(shù);⑤如果右邊是非負數(shù),就可以進一步通過直接開平方法來求出它的解,如果右邊是一個負數(shù),則判定此方程無實數(shù)解.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、原式=,當m=l時,原式=【解析】先通分計算括號里的,再計算括號外的,化為最簡,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整體代入化簡后的式子,計算即可.解:原式=∵x2+2x-3=0,∴x1=-3,x2=1∵‘m是方程x2+2x-3=0的根,∴m=-3或m=1∵m+3≠0,∴.m≠-3,∴m=1當m=l時,原式:“點睛”本題考查了分式的化簡求值、一元二次方程的解,解題的關(guān)鍵是通分、約分,以及分子分母的因式分解、整體代入.20、(1)x=-1;(2)﹣6≤y≤1;【解析】

(1)根據(jù)拋物線的對稱性和待定系數(shù)法求解即可;(2)根據(jù)二次函數(shù)的性質(zhì)可得.【詳解】(1)把點(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函數(shù)y=x2﹣2mx+5m的對稱軸是x=,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴當x=﹣1時,y取得最小值﹣6,由表可知當x=﹣4時y=1,當x=﹣1時y=﹣6,∴當﹣4≤x≤1時,﹣6≤y≤1.【點睛】本題考查了二次函數(shù)圖象與性質(zhì)及待定系數(shù)法求函數(shù)解析式,熟練掌握二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.21、【解析】

過點A作,垂足為G,利用三角函數(shù)求出CG,從而求出GD,繼而求出CD.連接FD并延長與BA的延長線交于點H,利用三角函數(shù)求出CH,由圖得出EH,再利用三角函數(shù)值求出EF.【詳解】過點A作,垂足為G.則,在中,,由題意,得,∴,連接FD并延長與BA的延長線交于點H.由題意,得.在中,,∴.在中,.答:支角鋼CD的長為45cm,EF的長為.考點:三角函數(shù)的應(yīng)用22、(1)10,補圖見解析;(2)眾數(shù)是5,中位數(shù)是1;(3)活動時間不少于1天的學生人數(shù)大約有5400人.【解析】

(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對圓心角的度數(shù);根據(jù)1天的人數(shù)和所占的百分比求出總?cè)藬?shù),再乘以8天的人數(shù)所占的百分比,即可補全統(tǒng)計圖;(2)根據(jù)眾數(shù)和中位數(shù)的定義即可求出答案;(3)用總?cè)藬?shù)乘以活動時間不少于1天的人數(shù)所占的百分比即可求出答案.【詳解】解:(1)扇形統(tǒng)計圖中a=1﹣5%﹣40%﹣20%﹣25%=10%,該扇形所對圓心角的度數(shù)為310°×10%=31°,參加社會實踐活動的天數(shù)為8天的人數(shù)是:×10%=10(人),補圖如下:故答案為10;(2)抽樣調(diào)查中總?cè)藬?shù)為100人,結(jié)合條形統(tǒng)計圖可得:眾數(shù)是5,中位數(shù)是1.(3)根據(jù)題意得:9000×(25%+10%+5%+20%)=5400(人),活動時間不少于1天的學生人數(shù)大約有5400人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?3、(1)A種樹每棵2元,B種樹每棵80元;(2)當購買A種樹木1棵,B種樹木25棵時,所需費用最少,最少為8550元.【解析】

(1)設(shè)A種樹每棵x元,B種樹每棵y元,根據(jù)“購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元”列出方程組并解答;(2)設(shè)購買A種樹木為x棵,則購買B種樹木為(2-x)棵,根據(jù)“購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍”列出不等式并求得x的取值范圍,結(jié)合實際付款總金額=0.9(A種樹的金額+B種樹的金額)進行解答.【詳解】解:(1)設(shè)A種樹木每棵x元,B種樹木每棵y元,根據(jù)題意,得,解得,答:A種樹木每棵2元,B種樹木每棵80元.(2)設(shè)購買A種樹木x棵,則B種樹木(2-x)棵,則x≥3(2-x).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.設(shè)實際付款總額是y元,則y=0.9[2x+80(2-x)].即y=18x+73.∵18>0,y隨x增大而增大,∴當x=1時,y最小為18×1+73=8550(元).答:當購買A種樹木1棵,B種樹木25棵時,所需費用最少,為8550元.24、(1)y=100x+17360;(2)3種方案:A型車21輛,B型車41輛最省錢.【解析】

(1)根據(jù)租車總費用=A、B兩種車的費用之和,列出函數(shù)關(guān)系式即可;

(2)列出不等式,求出自變量x的取值范圍,利用函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意:y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,又∵x為整數(shù),∴x的取值范圍為21≤x≤62的整數(shù);(2)由題意100x+17360≤19720,∴x≤23.6,∴21≤x≤23,∴共有3種租車方案,x=21時,y有最小值=1.即租租A型車21輛,B型車41輛最省錢.【點睛】本題考查一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用等知識,解題的關(guān)鍵是理解題意,學會利用函數(shù)的性質(zhì)解決最值問題.25、(1)2﹣;(2)見解析【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根據(jù)直角三角形30°角的性質(zhì)可得AC=2CE=2,再得∠ECD=90°-60°=30°,設(shè)ED=x,則CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的長;(2)如圖2,連接CM,先證明△ACE≌△BCF,則∠BFC=∠AEC=90°,證明C、M、B、F四點共圓,則∠BCM=∠MFB=45°,由等腰三角形三線合一的性質(zhì)可得AM=BM.詳解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt△ACE中,CE=1,∴AC=2CE=2,Rt△CED中,∠ECD=90°﹣60°=30°,∴CD=2ED,設(shè)ED=x,則CD=2x,∴CE=x,∴x=1,x=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論