四川省瀘縣2023年中考數(shù)學(xué)全真模擬試題含解析_第1頁
四川省瀘縣2023年中考數(shù)學(xué)全真模擬試題含解析_第2頁
四川省瀘縣2023年中考數(shù)學(xué)全真模擬試題含解析_第3頁
四川省瀘縣2023年中考數(shù)學(xué)全真模擬試題含解析_第4頁
四川省瀘縣2023年中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,在中,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)落在線段上的點(diǎn)處,點(diǎn)落在點(diǎn)處,則兩點(diǎn)間的距離為()A. B. C. D.2.如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.3.某市公園的東、西、南、北方向上各有一個(gè)入口,周末佳佳和琪琪隨機(jī)從一個(gè)入口進(jìn)入該公園游玩,則佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的概率是()A. B. C. D.4.如圖,四邊形ABCD是正方形,點(diǎn)P,Q分別在邊AB,BC的延長線上且BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②△OAE∽△OPA;③當(dāng)正方形的邊長為3,BP=1時(shí),cos∠DFO=,其中正確結(jié)論的個(gè)數(shù)是()A.0 B.1 C.2 D.35.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.46.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點(diǎn)是BD的中點(diǎn),若AD=6,則CP的長為()A.3.5 B.3 C.4 D.4.57.如圖,兩個(gè)同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm8.如圖所示,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),把△BEC繞點(diǎn)C旋轉(zhuǎn)至△DFC位置,則∠EFC的度數(shù)是()A.90° B.30° C.45° D.60°9.如圖,在直角坐標(biāo)系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點(diǎn)D位于直線y=﹣2與x軸之間的區(qū)域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點(diǎn)的個(gè)數(shù)是()A.0個(gè) B.1個(gè)或2個(gè)C.0個(gè)、1個(gè)或2個(gè) D.只有1個(gè)10.點(diǎn)A、C為半徑是4的圓周上兩點(diǎn),點(diǎn)B為的中點(diǎn),以線段BA、BC為鄰邊作菱形ABCD,頂點(diǎn)D恰在該圓半徑的中點(diǎn)上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或2二、填空題(共7小題,每小題3分,滿分21分)11.甲、乙兩個(gè)搬運(yùn)工搬運(yùn)某種貨物.已知乙比甲每小時(shí)多搬運(yùn)600kg,甲搬運(yùn)5000kg所用的時(shí)間與乙搬運(yùn)8000kg所用的時(shí)間相等.設(shè)甲每小時(shí)搬運(yùn)xkg貨物,則可列方程為_____.12.如圖,在中國象棋的殘局上建立平面直角坐標(biāo)系,如果“相”和“兵”的坐標(biāo)分別是(3,-1)和(-3,1),那么“卒”的坐標(biāo)為_____.

13.(2017黑龍江省齊齊哈爾市)如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,沿底邊BC上的高AD剪成兩個(gè)三角形,用這兩個(gè)三角形拼成平行四邊形,則這個(gè)平行四邊形較長的對(duì)角線的長是______.14.如圖,點(diǎn)D是線段AB的中點(diǎn),點(diǎn)C是線段AD的中點(diǎn),若CD=1,則AB=________________.15.若關(guān)于x的不等式組恰有3個(gè)整數(shù)解,則字母a的取值范圍是_____.16.如圖,為了測量河寬AB(假設(shè)河的兩岸平行),測得∠ACB=30°,∠ADB=60°,CD=60m,則河寬AB為m(結(jié)果保留根號(hào)).17.如果兩個(gè)相似三角形的面積的比是4:9,那么它們對(duì)應(yīng)的角平分線的比是_____.三、解答題(共7小題,滿分69分)18.(10分)數(shù)學(xué)興趣小組為了解我校初三年級(jí)1800名學(xué)生的身體健康情況,從初三隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.補(bǔ)全條形統(tǒng)計(jì)圖,并估計(jì)我校初三年級(jí)體重介于47kg至53kg的學(xué)生大約有多少名.19.(5分)如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,以O(shè)A為半徑的圓分別交AB、AC于點(diǎn)E、D,在BC的延長線上取點(diǎn)F,使得BF=EF.(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;(2)若∠A=30°,求證:DG=DA;(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.20.(8分)如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓恰好與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.(1)若∠B=30°,求證:以A、O、D、E為頂點(diǎn)的四邊形是菱形.(2)若AC=6,AB=10,連結(jié)AD,求⊙O的半徑和AD的長.21.(10分)如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點(diǎn)A作⊙O的切線交OC的延長線于點(diǎn)D,交BC的延長線于點(diǎn)E.(1)求證:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的長.22.(10分)如圖,已知拋物線過點(diǎn)A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點(diǎn)M是拋物線AC段上的一個(gè)動(dòng)點(diǎn),當(dāng)圖中陰影部分的面積最小值時(shí),求點(diǎn)M的坐標(biāo);(3)在圖乙中,點(diǎn)C和點(diǎn)C1關(guān)于拋物線的對(duì)稱軸對(duì)稱,點(diǎn)P在拋物線上,且∠PAB=∠CAC1,求點(diǎn)P的橫坐標(biāo).23.(12分)(定義)如圖1,A,B為直線l同側(cè)的兩點(diǎn),過點(diǎn)A作直線1的對(duì)稱點(diǎn)A′,連接A′B交直線l于點(diǎn)P,連接AP,則稱點(diǎn)P為點(diǎn)A,B關(guān)于直線l的“等角點(diǎn)”.(運(yùn)用)如圖2,在平面直坐標(biāo)系xOy中,已知A(2,3),B(﹣2,﹣3)兩點(diǎn).(1)C(4,32),D(4,22),E(4,12(2)若直線l垂直于x軸,點(diǎn)P(m,n)是點(diǎn)A,B關(guān)于直線l的等角點(diǎn),其中m>2,∠APB=α,求證:tanα2=n(3)若點(diǎn)P是點(diǎn)A,B關(guān)于直線y=ax+b(a≠0)的等角點(diǎn),且點(diǎn)P位于直線AB的右下方,當(dāng)∠APB=60°時(shí),求b的取值范圍(直接寫出結(jié)果).24.(14分)如圖,已知:正方形ABCD,點(diǎn)E在CB的延長線上,連接AE、DE,DE與邊AB交于點(diǎn)F,F(xiàn)G∥BE交AE于點(diǎn)G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點(diǎn)M,使得BM=BE,連接AM交DE于點(diǎn)O.求證:FO?ED=OD?EF.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

先利用勾股定理計(jì)算出AB,再在Rt△BDE中,求出BD即可;【詳解】解:∵∠C=90°,AC=4,BC=3,

∴AB=5,

∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,

∴AE=AC=4,DE=BC=3,

∴BE=AB-AE=5-4=1,

在Rt△DBE中,BD=,故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.2、C【解析】

設(shè)B′C′與CD的交點(diǎn)為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對(duì)應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計(jì)算即可得解.【詳解】如圖,設(shè)B′C′與CD的交點(diǎn)為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉(zhuǎn)角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點(diǎn).3、B【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果,可求得佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結(jié)果,其中佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的有4種等可能結(jié)果,所以佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的概率為,故選B.【點(diǎn)睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.4、C【解析】

由四邊形ABCD是正方形,得到AD=BC,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP;故①正確;根據(jù)勾股定理求出直接用余弦可求出.【詳解】詳解:∵四邊形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正確;②無法證明,故錯(cuò)誤.∵BP=1,AB=3,∴∴故③正確,故選C.【點(diǎn)睛】考查正方形的性質(zhì),三角形全等的判定與性質(zhì),勾股定理,銳角三角函數(shù)等,綜合性比較強(qiáng),對(duì)學(xué)生要求較高.5、C【解析】

由角平分線的定義得到∠CBE=∠ABE,再根據(jù)線段的垂直平分線的性質(zhì)得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據(jù)含30度的直角三角形三邊的關(guān)系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.6、B【解析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點(diǎn)是BD的中點(diǎn),∴CP=BD=1.故選B.7、B【解析】

首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進(jìn)而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,

∵大圓的一條弦AB與小圓相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的長==4π,

故選B.【點(diǎn)睛】本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.8、C【解析】

根據(jù)正方形的每一個(gè)角都是直角可得∠BCD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)解答.【詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點(diǎn)C旋轉(zhuǎn)至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【點(diǎn)睛】本題目是一道考查旋轉(zhuǎn)的性質(zhì)問題——每對(duì)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的連線的夾角都等于旋轉(zhuǎn)角度,每對(duì)對(duì)應(yīng)邊相等,故為等腰直角三角形.9、C【解析】

根據(jù)題意,利用分類討論的數(shù)學(xué)思想可以得到l與直線y=﹣1交點(diǎn)的個(gè)數(shù),從而可以解答本題.【詳解】∵拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點(diǎn)D位于直線y=﹣2與x軸之間的區(qū)域,開口向下,∴當(dāng)頂點(diǎn)D位于直線y=﹣1下方時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為0,當(dāng)頂點(diǎn)D位于直線y=﹣1上時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為1,當(dāng)頂點(diǎn)D位于直線y=﹣1上方時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為2,故選C.【點(diǎn)睛】考查拋物線與x軸的交點(diǎn)、二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用函數(shù)的思想和分類討論的數(shù)學(xué)思想解答.10、C【解析】

過B作直徑,連接AC交AO于E,如圖①,根據(jù)已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據(jù)勾股定理得到結(jié)論.【詳解】過B作直徑,連接AC交AO于E,∵點(diǎn)B為的中點(diǎn),∴BD⊥AC,如圖①,∵點(diǎn)D恰在該圓直徑上,D為OB的中點(diǎn),∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【點(diǎn)睛】本題考查了圓心角,弧,弦的關(guān)系,勾股定理,菱形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、=【解析】

設(shè)甲每小時(shí)搬運(yùn)x千克,則乙每小時(shí)搬運(yùn)(x+600)千克,根據(jù)甲搬運(yùn)5000kg所用時(shí)間與乙搬運(yùn)8000kg所用時(shí)間相等建立方程求出其解就可以得出結(jié)論.【詳解】解:設(shè)甲每小時(shí)搬運(yùn)x千克,則乙每小時(shí)搬運(yùn)(x+600)千克,由題意得:=.故答案是:=.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出分式方程,根據(jù)題意找到等量關(guān)系是關(guān)鍵.12、(-2,-2)【解析】

先根據(jù)“相”和“兵”的坐標(biāo)確定原點(diǎn)位置,然后建立坐標(biāo)系,進(jìn)而可得“卒”的坐標(biāo).【詳解】“卒”的坐標(biāo)為(﹣2,﹣2),故答案是:(﹣2,﹣2).【點(diǎn)睛】考查了坐標(biāo)確定位置,關(guān)鍵是正確確定原點(diǎn)位置.13、10,,.【解析】解:如圖,過點(diǎn)A作AD⊥BC于點(diǎn)D,∵△ABC邊AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如圖①所示:可得四邊形ACBD是矩形,則其對(duì)角線長為:10;如圖②所示:AD=8,連接BC,過點(diǎn)C作CE⊥BD于點(diǎn)E,則EC=8,BE=2BD=12,則BC=;如圖③所示:BD=6,由題意可得:AE=6,EC=2BE=16,故AC==.故答案為10,,.14、4【解析】∵點(diǎn)C是線段AD的中點(diǎn),若CD=1,∴AD=1×2=2,∵點(diǎn)D是線段AB的中點(diǎn),∴AB=2×2=4,故答案為4.15、﹣2≤a<﹣1.【解析】

先確定不等式組的整數(shù)解,再求出a的范圍即可.【詳解】∵關(guān)于x的不等式組恰有3個(gè)整數(shù)解,∴整數(shù)解為1,0,﹣1,∴﹣2≤a<﹣1,故答案為:﹣2≤a<﹣1.【點(diǎn)睛】本題考查了一元一次不等式組的整數(shù)解的應(yīng)用,能根據(jù)已知不等式組的解集和整數(shù)解確定a的取值范圍是解此題的關(guān)鍵.16、【解析】

解:∵∠ACB=30°,∠ADB=60°,

∴∠CAD=30°,

∴AD=CD=60m,

在Rt△ABD中,

AB=AD?sin∠ADB=60×=(m).故答案是:.17、2:1【解析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對(duì)應(yīng)的角平分線的比等于相似比,可知它們對(duì)應(yīng)的角平分線比是2:1.故答案為2:1.點(diǎn)睛:本題考查的是相似三角形的性質(zhì),即相似三角形對(duì)應(yīng)邊的比、對(duì)應(yīng)高線的比、對(duì)應(yīng)角平分線的比、周長的比都等于相似比;面積的比等于相似比的平方.三、解答題(共7小題,滿分69分)18、576名【解析】試題分析:根據(jù)統(tǒng)計(jì)圖可以求得本次調(diào)查的人數(shù)和體重落在B組的人數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整,進(jìn)而可以求得我校初三年級(jí)體重介于47kg至53kg的學(xué)生大約有多少名.試題解析:本次調(diào)查的學(xué)生有:32÷16%=200(名),體重在B組的學(xué)生有:200﹣16﹣48﹣40﹣32=64(名),補(bǔ)全的條形統(tǒng)計(jì)圖如右圖所示,我校初三年級(jí)體重介于47kg至53kg的學(xué)生大約有:1800×=576(名),答:我校初三年級(jí)體重介于47kg至53kg的學(xué)生大約有576名.19、(1)EF是⊙O的切線,理由詳見解析;(1)詳見解析;(3)⊙O的半徑的長為1.【解析】

(1)連接OE,根據(jù)等腰三角形的性質(zhì)得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到結(jié)論;(1)根據(jù)含30°的直角三角形的性質(zhì)證明即可;(3)由AD是⊙O的直徑,得到∠AED=90°,根據(jù)三角形的內(nèi)角和得到∠EOD=60°,求得∠EGO=30°,根據(jù)三角形和扇形的面積公式即可得到結(jié)論.【詳解】解:(1)連接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切線;(1)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直徑,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵陰影部分的面積解得:r1=4,即r=1,即⊙O的半徑的長為1.【點(diǎn)睛】本題考查了切線的判定,等腰三角形的性質(zhì),圓周角定理,扇形的面積的計(jì)算,正確的作出輔助線是解題的關(guān)鍵.20、(1)證明見解析;(2);3.【解析】試題分析:(1)連接OD、OE、ED.先證明△AOE是等邊三角形,得到AE=AO=0D,則四邊形AODE是平行四邊形,然后由OA=OD證明四邊形AODE是菱形;(2)連接OD、DF.先由△OBD∽△ABC,求出⊙O的半徑,然后證明△ADC∽△AFD,得出AD2=AC?AF,進(jìn)而求出AD.試題解析:(1)證明:如圖1,連接OD、OE、ED.∵BC與⊙O相切于一點(diǎn)D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等邊三角形,∴AE=AO=0D,∴四邊形AODE是平行四邊形,∵OA=OD,∴四邊形AODE是菱形.(2)解:設(shè)⊙O的半徑為r.∵OD∥AC,∴△OBD∽△ABC.∴,即8r=6(8﹣r).解得r=,∴⊙O的半徑為.如圖2,連接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直徑,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC?AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.點(diǎn)評(píng):本題考查了切線的性質(zhì)、圓周角定理、等邊三角形的判定與性質(zhì)、菱形的判定和性質(zhì)以及相似三角形的判定和性質(zhì),是一個(gè)綜合題,難度中等.熟練掌握相關(guān)圖形的性質(zhì)及判定是解本題的關(guān)鍵.考點(diǎn):切線的性質(zhì);菱形的判定與性質(zhì);相似三角形的判定與性質(zhì).21、(1)證明見解析;(2).【解析】

(1)由切線的性質(zhì)可知∠DAB=90°,由直角所對(duì)的圓周為90°可知∠ACB=90°,根據(jù)同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質(zhì)可知∠B=∠OCB,由對(duì)頂角的性質(zhì)可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE?AD,故此可求得DE=,于是可求得AE=.【詳解】解:(1)∵AD是圓O的切線,∴∠DAB=90°.∵AB是圓O的直徑,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.22、(1)y=12x2-x-4(2)點(diǎn)M的坐標(biāo)為(2,-4)(3)-83【解析】【分析】(1)設(shè)交點(diǎn)式y(tǒng)=a(x+2)(x-4),然后把C點(diǎn)坐標(biāo)代入求出a即可得到拋物線解析式;

(2)連接OM,設(shè)點(diǎn)M的坐標(biāo)為m,12m2-m-4.由題意知,當(dāng)四邊形OAMC面積最大時(shí),陰影部分的面積最?。甋四邊形OAMC=S△OAM(3)拋物線的對(duì)稱軸為直線x=1,點(diǎn)C與點(diǎn)C1關(guān)于拋物線的對(duì)稱軸對(duì)稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設(shè)點(diǎn)Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設(shè)點(diǎn)M的坐標(biāo)為m,1由題意知,當(dāng)四邊形OAMC面積最大時(shí),陰影部分的面積最小.S四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當(dāng)m=2時(shí),四邊形OAMC面積最大,此時(shí)陰影部分面積最小,所以點(diǎn)M的坐標(biāo)為(2,-4).(3)∵拋物線的對(duì)稱軸為直線x=1,點(diǎn)C與點(diǎn)C1關(guān)于拋物線的對(duì)稱軸對(duì)稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設(shè)點(diǎn)Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點(diǎn)P的橫坐標(biāo)為-83或-4【點(diǎn)睛】本題考核知識(shí)點(diǎn):二次函數(shù)綜合運(yùn)用.解題關(guān)鍵點(diǎn):熟記二次函數(shù)的性質(zhì),數(shù)形結(jié)合,由所求分析出必知條件.23、(1)C(2)n2(3)b<﹣735且b≠﹣2【解析】

(1)先求出B關(guān)于直線x=4的對(duì)稱點(diǎn)B′的坐標(biāo),根據(jù)A、B′的坐標(biāo)可得直線AB′的解析式,把x=4代入求出P點(diǎn)的縱坐標(biāo)即可得答案;(2)如圖:過點(diǎn)A作直線l的對(duì)稱點(diǎn)A′,連A′B′,交直線l于點(diǎn)P,作BH⊥l于點(diǎn)H,根據(jù)對(duì)稱性可知∠APG=A′PG,由∠AGP=∠BHP=90°可證明△AGP∽△BHP,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得m=2根據(jù)外角性質(zhì)可知∠A=∠A′=α2根據(jù)對(duì)稱性質(zhì)可證明△ABQ是等邊三角形,即點(diǎn)Q為定點(diǎn),若直線y=ax+b(a≠0)與圓相切,易得P、Q重合,所以直線y=ax+b(a≠0)過定點(diǎn)Q,連OQ,過點(diǎn)A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N,可證明△AMO∽△ONQ,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得ON、NQ的長,即可得Q點(diǎn)坐標(biāo),根據(jù)A、B、Q的坐標(biāo)可求出直線AQ、BQ的解析式,根據(jù)P與A、B重合時(shí)b的值求出b的取值范圍即可.【詳解】(1)點(diǎn)B關(guān)于直線x=4的對(duì)稱點(diǎn)為B′(10,﹣3),∴直線AB′解析式為:y=﹣34當(dāng)x=4時(shí),y=32故答案為:C(2)如圖,過點(diǎn)A作直線l的對(duì)稱點(diǎn)A′,連A′B′,交直線l于點(diǎn)P作BH⊥l于點(diǎn)H∵點(diǎn)A和A′關(guān)于直線l對(duì)稱∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴AGBH=GP∴mn=23,即m=23∵∠APB=α,AP=AP′,∴∠A=∠A′=α2在Rt△AGP中,tanα2=(3)如圖,當(dāng)點(diǎn)P位于直線AB的右下方,∠APB=60°時(shí),點(diǎn)P在以AB為弦,所對(duì)圓周為60°,且圓心在AB下方若直線y=ax+b(a≠0)與圓相交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論