




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、Diracδ函數(shù)
1°Diracδ函數(shù)的定義
2°Diracδ函數(shù)可以用一些連續(xù)函數(shù)的序列極限來(lái)表示
3°Diracδ函數(shù)的性質(zhì)
4°復(fù)合函數(shù)形式的Diracδ函數(shù)——δ[h(x)]
5°二維Diracδ函數(shù)
MMQQI激光脈沖及其它小光源早在一個(gè)多世紀(jì)前,物理學(xué)家就感到有必要引入一個(gè)數(shù)學(xué)符號(hào)來(lái)描述質(zhì)點(diǎn)、點(diǎn)電荷、點(diǎn)光源及又窄又強(qiáng)的電脈沖等一類物理量,當(dāng)時(shí)用于描述這種物理量的數(shù)學(xué)符號(hào)被稱之為‘沖擊脈沖符號(hào)’。1947年,英國(guó)物理學(xué)家P.A.M.Dirac在他的著作《PrincipleofQuantumMechanics》中正式引入δ(x),并稱它為‘奇異函數(shù)’或‘廣義函數(shù)’。δ(x)函數(shù)之所以被稱為‘奇異函數(shù)’或‘廣義函數(shù)’,原因在于:一、它不象普通函數(shù)那樣存在確定的函數(shù)值,而是一種極限狀態(tài),而且它的極限也和普通函數(shù)不同,不是收斂到定值,而是收斂到無(wú)窮大;二、函數(shù)不象普通函數(shù)那樣進(jìn)行四則運(yùn)算和乘冪運(yùn)算,它對(duì)別的函數(shù)的作用只能通過(guò)積分來(lái)確定。在光學(xué)里,δ(x)函數(shù)常常用來(lái)表示位于坐標(biāo)原點(diǎn)的具有單位光功率的點(diǎn)光源,由于點(diǎn)光源所占面積趨近于零,所以在x=0點(diǎn)功率密度趨近于無(wú)窮大。
在(1)和(2)中變換原點(diǎn),得到:
(3)其中a為任意常數(shù)。因此用δ(x-a)乘x的函數(shù),并對(duì)所有x積分的過(guò)程,等效于用a代替x的過(guò)程。
*定義的另外形式:2°δ(x)可以用一些連續(xù)函數(shù)的序列極限來(lái)表示
1)、歸一化的Gauss分布函數(shù)G(x):
(4)該函數(shù)具有如下的性質(zhì):
(5)當(dāng)σ→0時(shí),G(x)就趨向于δ(x),即:
(6)(1)(3)2)、函數(shù)
的極限
也滿足δ(x)函數(shù)的條件:
(7)其中α>0。
證明:當(dāng)x=0時(shí),
當(dāng)x≠0時(shí),sin(αx)/(αx)以周期2π/α振蕩,振幅隨著|αx|的增加而減小。所以,當(dāng)α→∞時(shí),于是有:當(dāng)α>0時(shí),查找定積分表可得到:
所以有:的極限
根據(jù)上述討論可知,函數(shù)
滿足δ(x)函數(shù)的條件,可以表示Diracδ(x)函數(shù),即(7)式成立。
3)、函數(shù)
的極限
也滿足δ(x)函數(shù)的條件,即:
(8)其中α>0。
證明:當(dāng)x=0時(shí),當(dāng)x≠0時(shí),sin(αx)/(αx)以周期2π/α振蕩,振幅隨著|αx|的增加而減小。所以:當(dāng)α→∞時(shí),sin(αx)/(αx)→0于是有:4)、階躍函數(shù)的導(dǎo)數(shù)也可以表示Diracδ(x)函數(shù)。
根據(jù)第一次課所講的內(nèi)容可知,階躍函數(shù)step(x)也稱為Heaviside函數(shù),也可以用H(x)表示,其定義如下:
(9)函數(shù)H(x-a)對(duì)x的導(dǎo)數(shù)也滿足δ(x)的條件,即:
(10)很容易看出,當(dāng)x≠a時(shí),
而當(dāng)x=a時(shí),
利用分步法計(jì)算積分,有:
根據(jù)以上討論,再結(jié)合式(3)可知,Heaviside函數(shù)H(x-a)對(duì)x的導(dǎo)數(shù)可以表示Diracδ(x)函數(shù),即式(10)成立。
證明:3°Dirac函數(shù)的性質(zhì)性質(zhì)1)、積分性質(zhì):δ函數(shù)的定義式:即表明了δ函數(shù)的積分性質(zhì),這個(gè)積分也可稱之為δ函數(shù)的‘強(qiáng)度’。性質(zhì)2)、篩選性質(zhì):式(2)表明了δ函數(shù)的篩選性質(zhì)。則是其推論。
(2)而式(3)中的由此得出推論:性質(zhì)4)、δ函數(shù)的乘法性質(zhì):如果f(x)在x0點(diǎn)連續(xù),則有:
由此得出推論:xδ(x)=0和4°復(fù)合函數(shù)形式的δ函數(shù)——δ[h(x)]
設(shè)方程h(x)=0有n個(gè)實(shí)數(shù)根x1,x2,…,xn,則在任意實(shí)根xi附近足夠小的鄰域內(nèi)有:h(x)=h'(xi)(x-xi)其中h'(xi)是h(x)在x=xi處的一階導(dǎo)數(shù)。如果h'(xi)≠0,則在xi附近可以寫(xiě)出:δ[h(x)]=δ[h'(xi)(x-xi)]=上式表明,δ[h(x)]是由n個(gè)脈沖構(gòu)成的脈沖系列,各個(gè)脈沖位置由方程h(x)=0的n個(gè)實(shí)根確定,各脈沖的強(qiáng)度則由系數(shù)|h'(xi)|-1來(lái)確定。
若h'(xi)在n個(gè)實(shí)根處皆不為零,則有:
h'(xi)≠0推論:直角坐標(biāo)系(x,y)
極坐標(biāo)系(r,θ)
δ(x,y)
δ(r)δ(x-x0,y)δ(r-x0,θ)
δ(x,y-y0)
δ(x+x0,y)
δ(r-x0,θ-π)
δ(x,y+y0)
δ(x-x0,y-y0)
幾個(gè)二維δ函數(shù)在兩種坐標(biāo)系中的位置關(guān)系
表1考慮到脈沖強(qiáng)度的對(duì)應(yīng)關(guān)系,下面給出兩個(gè)二維δ函數(shù)坐標(biāo)變換的例子:顯然,δ(x,y)和δ(r)的位置相同。例1)、可見(jiàn),脈沖位置和強(qiáng)度都相同,所以坐標(biāo)變換成立。曲面下的體積為:而證明:δ(x,y)曲面下的體積為:例2)、
其中,
顯然,δ(x-x0,y-
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度河北滄州水務(wù)發(fā)展集團(tuán)有限責(zé)任公司公開(kāi)招聘員工15人筆試參考題庫(kù)附帶答案詳解
- Revision Module A (2)-教學(xué)設(shè)計(jì)2024-2025學(xué)年外研版英語(yǔ)九年級(jí)上冊(cè)
- 第五課 做守法的公民 教學(xué)設(shè)計(jì)-2024-2025學(xué)年統(tǒng)編版道德與法治八年級(jí)上冊(cè)
- 熱點(diǎn)主題作文寫(xiě)作指導(dǎo):自愛(ài)心(審題指導(dǎo)與例文)
- 2024年北京中水科工程集團(tuán)有限公司招聘1人工程設(shè)計(jì)研究中心筆試參考題庫(kù)附帶答案詳解
- 2024年12月四季重慶豐都事業(yè)單位公開(kāi)招聘143人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2024年6月浙江省普通高校招生選考高考信息技術(shù)真題及答案
- 2025年湖南國(guó)防工業(yè)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)完整版
- 第八單元 到實(shí)驗(yàn)室去:粗鹽中難溶性雜質(zhì)的去除教學(xué)設(shè)計(jì)-2023-2024學(xué)年九年級(jí)化學(xué)魯教版下冊(cè)
- 2024年12月2025山東威海市環(huán)翠區(qū)民兵訓(xùn)練基地公開(kāi)招聘事業(yè)單位工作人員1人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025年湖南鐵路科技職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)參考答案
- 酒店長(zhǎng)包房租賃協(xié)議書(shū)范本
- 2025年幾內(nèi)亞水泥廠項(xiàng)目投資可行性報(bào)告
- 【道法】開(kāi)學(xué)第一課 課件-2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)下冊(cè)
- 口腔門(mén)診分診流程
- 提高設(shè)備基礎(chǔ)預(yù)埋螺栓一次安裝合格率
- 2025年春新外研版(三起)英語(yǔ)三年級(jí)下冊(cè)課件 Unit2第1課時(shí)Startup
- 中華民族共同體概論專家講座第一講中華民族共同體基礎(chǔ)理論
- 2023年浙江省統(tǒng)招專升本考試英語(yǔ)真題及答案解析
- GB 9706.202-2021醫(yī)用電氣設(shè)備第2-2部分:高頻手術(shù)設(shè)備及高頻附件的基本安全和基本性能專用要求
- 幼兒園小足球活動(dòng)游戲化教學(xué)的研究
評(píng)論
0/150
提交評(píng)論