版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年浙江省臺州黃巖區(qū)六校聯(lián)考中考數(shù)學(xué)對點突破模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列說法正確的是()A.﹣3是相反數(shù) B.3與﹣3互為相反數(shù)C.3與互為相反數(shù) D.3與﹣互為相反數(shù)2.下列計算,結(jié)果等于a4的是()A.a(chǎn)+3aB.a(chǎn)5﹣aC.(a2)2D.a(chǎn)8÷a23.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點A,D分別對應(yīng)數(shù)軸上的實數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.44.下列運算正確的是()A.a(chǎn)﹣3a=2a B.(ab2)0=ab2 C.= D.×=95.的相反數(shù)是A.4 B. C. D.6.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a(chǎn)>b>cB.一次函數(shù)y=ax+c的圖象不經(jīng)第四象限C.m(am+b)+b<a(m是任意實數(shù))D.3b+2c>07.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.238.下列運算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a69.為了盡早適應(yīng)中考體育項目,小麗同學(xué)加強(qiáng)跳繩訓(xùn)練,并把某周的練習(xí)情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數(shù)的中位數(shù)和眾數(shù)分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個10.關(guān)于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當(dāng)時,函數(shù)值隨著的增大而增大; D.當(dāng)時,.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內(nèi)部.將AF延長交邊BC于點G.若,則(用含k的代數(shù)式表示).12.已知直角三角形的兩邊長分別為3、1.則第三邊長為________.13.如圖,在△ABC中,∠BAC=50°,AC=2,AB=3,將△ABC繞點A逆時針旋轉(zhuǎn)50°,得到△AB1C1,則陰影部分的面積為_______.14.如圖,AB是半圓O的直徑,E是半圓上一點,且OE⊥AB,點C為的中點,則∠A=__________°.15.分解因式:4m2﹣16n2=_____.16.因式分解:3x2-6xy+3y2=______.17.如圖,正方形ABCD內(nèi)有兩點E、F滿足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,則正方形ABCD的邊長為_____.三、解答題(共7小題,滿分69分)18.(10分)旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.(1)如圖1,當(dāng)α=60°時,將△AEC繞點A順時針旋轉(zhuǎn)60°到△AFB的位置,連接DF,①求∠DAF的度數(shù);②求證:△ADE≌△ADF;(2)如圖2,當(dāng)α=90°時,猜想BD、DE、CE的數(shù)量關(guān)系,并說明理由;(3)如圖3,當(dāng)α=120°,BD=4,CE=5時,請直接寫出DE的長為.19.(5分)如圖,矩形ABCD繞點C順時針旋轉(zhuǎn)90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;(1)求證:AM=FM;(2)若∠AMD=a.求證:=cosα.20.(8分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.21.(10分)問題提出(1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高M(jìn)N=1.2m(N為AD的中點,MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認(rèn)為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.22.(10分)為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個學(xué)生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計圖:根據(jù)統(tǒng)計圖所提供的倍息,解答下列問題:(1)本次抽樣調(diào)查中的學(xué)生人數(shù)是多少人;(2)補(bǔ)全條形統(tǒng)計圖;(3)若該校共有2000名學(xué)生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為“打球”的學(xué)生人數(shù);(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干?,但只能選兩名學(xué)生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.23.(12分)如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)B點坐標(biāo)為,并求拋物線的解析式;(2)求線段PC長的最大值;(3)若△PAC為直角三角形,直接寫出此時點P的坐標(biāo).24.(14分)拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過點O(0,0),A(4,4),與x軸的另一交點為點B,且拋物線對稱軸與線段OA交于點P.(1)求該拋物線的解析式和頂點坐標(biāo);(2)過點P作x軸的平行線l,若點Q是直線上的動點,連接QB.①若點O關(guān)于直線QB的對稱點為點C,當(dāng)點C恰好在直線l上時,求點Q的坐標(biāo);②若點O關(guān)于直線QB的對稱點為點D,當(dāng)線段AD的長最短時,求點Q的坐標(biāo)(直接寫出答案即可).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
符號不同,絕對值相等的兩個數(shù)互為相反數(shù),可據(jù)此來判斷各選項是否正確.【詳解】A、3和-3互為相反數(shù),錯誤;B、3與-3互為相反數(shù),正確;C、3與互為倒數(shù),錯誤;D、3與-互為負(fù)倒數(shù),錯誤;故選B.【點睛】此題考查相反數(shù)問題,正確理解相反數(shù)的定義是解答此題的關(guān)鍵.2、C【解析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘進(jìn)行計算即可.【詳解】A.a(chǎn)+3a=4a,錯誤;B.a(chǎn)5和a不是同類項,不能合并,故此選項錯誤;C.(a2)2=a4,正確;D.a(chǎn)8÷a2=a6,錯誤.故選C.【點睛】本題主要考查了同底數(shù)冪的乘除法,以及冪的乘方,關(guān)鍵是正確掌握計算法則.3、C【解析】
根據(jù)等腰三角形的性質(zhì)和勾股定理解答即可.【詳解】解:∵點A,D分別對應(yīng)數(shù)軸上的實數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點睛】此題考查等腰三角形的性質(zhì),注意等腰三角形的三線合一,熟練運用勾股定理.4、D【解析】
直接利用合并同類項法則以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】解:A、a﹣3a=﹣2a,故此選項錯誤;B、(ab2)0=1,故此選項錯誤;C、故此選項錯誤;D、×=9,正確.故選D.【點睛】此題主要考查了合并同類項以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì),正確把握相關(guān)性質(zhì)是解題關(guān)鍵.5、A【解析】
直接利用相反數(shù)的定義結(jié)合絕對值的定義分析得出答案.【詳解】-1的相反數(shù)為1,則1的絕對值是1.故選A.【點睛】本題考查了絕對值和相反數(shù),正確把握相關(guān)定義是解題的關(guān)鍵.6、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經(jīng)一、三、四象限,故此選項錯誤;C.當(dāng)x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當(dāng)x=1,y>0,∴當(dāng)x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)與方程之間的轉(zhuǎn)換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.7、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點:1正多邊形和圓;2.弧長的計算.8、D【解析】
根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進(jìn)行計算即可.【詳解】A、(a2)5=a10,故原題計算錯誤;B、(x﹣1)2=x2﹣2x+1,故原題計算錯誤;C、3a2b和3ab2不是同類項,不能合并,故原題計算錯誤;D、a2?a4=a6,故原題計算正確;故選:D.【點睛】此題主要考查了冪的乘方、完全平方公式、合并同類項和同底數(shù)冪的乘法,關(guān)鍵是掌握各計算法則.9、B【解析】
根據(jù)中位數(shù)和眾數(shù)的定義分別進(jìn)行解答即可.【詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【點睛】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關(guān)鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).10、C【解析】
直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【詳解】A、關(guān)于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關(guān)于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關(guān)于反比例函數(shù)y=-,當(dāng)x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關(guān)于反比例函數(shù)y=-,當(dāng)x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關(guān)函數(shù)的性質(zhì)是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、?!窘馕觥吭囶}分析:如圖,連接EG,∵,∴設(shè),則?!唿cE是邊CD的中點,∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴?!嘣赗t△ABG中,由勾股定理得:,即?!唷!啵ㄖ蝗≌担??!?。12、4或【解析】試題分析:已知直角三角形兩邊的長,但沒有明確是直角邊還是斜邊,因此分兩種情況討論:①長為3的邊是直角邊,長為3的邊是斜邊時:第三邊的長為:;②長為3、3的邊都是直角邊時:第三邊的長為:;∴第三邊的長為:或4.考點:3.勾股定理;4.分類思想的應(yīng)用.13、π【解析】試題分析:∵,∴S陰影===.故答案為.考點:旋轉(zhuǎn)的性質(zhì);扇形面積的計算.14、22.5【解析】
連接半徑OC,先根據(jù)點C為的中點,得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質(zhì)得:∠A=∠ACO=×45°,可得結(jié)論.【詳解】連接OC,
∵OE⊥AB,
∴∠EOB=90°,
∵點C為的中點,
∴∠BOC=45°,
∵OA=OC,
∴∠A=∠ACO=×45°=22.5°,
故答案為:22.5°.【點睛】本題考查了圓周角定理與等腰三角形的性質(zhì).解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用.15、4(m+2n)(m﹣2n).【解析】
原式提取4后,利用平方差公式分解即可.【詳解】解:原式=4().故答案為【點睛】本題考查提公因式法與公式法的綜合運用,解題的關(guān)鍵是熟練掌握因式分解的方法.16、3(x﹣y)1【解析】試題分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考點:提公因式法與公式法的綜合運用17、【解析】分析:連接AC,交EF于點M,可證明△AEM∽△CMF,根據(jù)條件可求得AE、EM、FM、CF,再結(jié)合勾股定理可求得AB.詳解:連接AC,交EF于點M,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=1,EF=FC=3,∴,∴EM=,F(xiàn)M=,在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,∴AC=AM+CM=5,在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,∴AB=,即正方形的邊長為.故答案為:.點睛:本題主要考查相似三角形的判定和性質(zhì)及正方形的性質(zhì),構(gòu)造三角形相似利用相似三角形的對應(yīng)邊成比例求得AC的長是解題的關(guān)鍵,注意勾股定理的應(yīng)用.三、解答題(共7小題,滿分69分)18、(1)①30°②見解析(2)BD2+CE2=DE2(3)【解析】
(1)①利用旋轉(zhuǎn)的性質(zhì)得出∠FAB=∠CAE,再用角的和即可得出結(jié)論;②利用SAS判斷出△ADE≌△ADF,即可得出結(jié)論;(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結(jié)論;(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,F(xiàn)M,最后用勾股定理即可得出結(jié)論.【詳解】解:(1)①由旋轉(zhuǎn)得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋轉(zhuǎn)知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如圖2,將△AEC繞點A順時針旋轉(zhuǎn)90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根據(jù)勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如圖3,將△AEC繞點A順時針旋轉(zhuǎn)90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,過點F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴,∵BD=4,∴DM=BD﹣BM=,根據(jù)勾股定理得,,∴DE=DF=,故答案為.【點睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,構(gòu)造全等三角形和直角三角形是解本題的關(guān)鍵.19、(1)見解析;(2)見解析.【解析】
(1)由旋轉(zhuǎn)性質(zhì)可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,則HF=FG=AD,所以可證△ADM≌△MHF,結(jié)論可得.(2)作FN⊥DG垂足為N,且MF=FG,可得HN=GN,且DM=MH,可證2MN=DG,由第一問可得2MF=AF,由cosα=cos∠FMG=,代入可證結(jié)論成立【詳解】(1)由旋轉(zhuǎn)性質(zhì)可知:CD=CG且∠DCG=90°,∴∠DGC=45°從而∠DGF=45°,∵∠EFG=90°,∴HF=FG=AD又由旋轉(zhuǎn)可知,AD∥EF,∴∠DAM=∠HFM,又∵∠DMA=∠HMF,∴△ADM≌△FHM∴AM=FM(2)作FN⊥DG垂足為N∵△ADM≌△MFH∴DM=MH,AM=MF=AF∵FH=FG,F(xiàn)N⊥HG∴HN=NG∵DG=DM+HM+HN+NG=2(MH+HN)∴MN=DG∵cos∠FMG=∴cos∠AMD=∴=cosα【點睛】本題考查旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),全等三角形的判定,三角函數(shù),關(guān)鍵是構(gòu)造直角三角形.20、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)垂直的定義可得∠CEB=90°,然后根據(jù)角平分線的性質(zhì)和等腰三角形的性質(zhì),判斷出∠1=∠D,從而根據(jù)平行線的判定得到CE∥BD,根據(jù)平行線的性質(zhì)得∠DBA=∠CEB,由此可根據(jù)切線的判定得證結(jié)果;(2)連接AC,由射影定理可得CE試題解析:(1)證明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直徑,∴BD是⊙O的切線.(2)連接AC,∵AB是⊙O直徑,∴∠ACB=90∵CE⊥AB,可得CE∴在Rt△CEB中,∠CEB=90°,由勾股定理得BC=∴BD=BC=20.∵∠1=∠D,∠EFC=∠BFD,∴△EFC∽△BFD.∴.∴1220∴BF=1.考點:切線的判定,相似三角形,勾股定理21、(1);(2);(2)小貝的說法正確,理由見解析,.【解析】
(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補(bǔ)全⊙O,連接AO并延長交⊙O右半側(cè)于點P,則此時A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【詳解】解:(1)如圖1,連接AC,BD,對角線交點為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補(bǔ)全⊙O,連接AO并延長交⊙O右半側(cè)于點P,則此時A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小貝的說法正確.理由如下,如圖1,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,由題意知,點N為AD的中點,,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,設(shè)AO=r,則ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴門角B到門窗弓形弧AD的最大距離為.【點睛】本題考查了圓與多邊形的綜合,涉及了圓的有關(guān)概念及性質(zhì)、等邊三角形的性質(zhì)、正方形和長方形的性質(zhì)、勾股定理等,靈活的利用兩點之間線段最短,添加輔助線將題中所求最大距離轉(zhuǎn)化為圓外一點到圓上的最大距離是解題的關(guān)鍵.22、(1)本次抽樣調(diào)查中的學(xué)生人數(shù)為100人;(2)補(bǔ)全條形統(tǒng)計圖見解析;(3)估計該校課余興趣愛好為“打球”的學(xué)生人數(shù)為800人;(4).【解析】
(1)用選“閱讀”的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);(2)先計算出選“舞蹈”的人數(shù),再計算出選“打球”的人數(shù),然后補(bǔ)全條形統(tǒng)計圖;(3)用2000乘以樣本中選“打球”的人數(shù)所占的百分比可估計該校課余興趣愛好為“打球”的學(xué)生人數(shù);(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出選到一男一女的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)30÷30%=100,所以本次抽樣調(diào)查中的學(xué)生人數(shù)為100人;(2)選”舞蹈”的人數(shù)為100×10%=10(人),選“打球”的人數(shù)為100﹣30﹣10﹣20=40(人),補(bǔ)全條形統(tǒng)計圖為:(3)2000×=800,所以估計該校課余興趣愛好為“打球”的學(xué)生人數(shù)為800人;(4)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中選到一男一女的結(jié)果數(shù)為8,所以選到一男一女的概率=.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,列表法與樹狀圖法求概率,讀懂統(tǒng)計圖,從中找到有用的信息是解題的關(guān)鍵.本題中還用到了知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)(4,6);y=1x1﹣8x+6(1);(3)點P的坐標(biāo)為(3,5)或().【解析】
(1)已知B(4,m)在直線y=x+1上,可求得m的值,拋物線圖象上的A、B兩點坐標(biāo),可將其代入拋物線的解析式中,通過聯(lián)立方程組即可求得待定系數(shù)的值.(1)要弄清PC的長,實際是直線AB與拋物線函數(shù)值的差.可設(shè)出P點橫坐標(biāo),根據(jù)直線AB和拋物線的解析式表示出P、C的縱坐標(biāo),進(jìn)而得到關(guān)于PC與P點橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出PC的最大值.(3)根據(jù)頂點問題分情況討論,若點P為直角頂點,此圖形不存在,若點A為直角頂點,根據(jù)已知解析式與點坐標(biāo),可求出未知解析式,再聯(lián)立拋物線的解析式,可求得C點的坐標(biāo);若點C為直角頂點,可根據(jù)點的對稱性求出結(jié)論.【詳解】解:(1)∵B(4,m)在直線y=x+1上,∴m=4+1=6,∴B(4,6),故答案為(4,6);∵A(,),B(4,6)在拋物線y=ax1+bx+6上,∴,解得,∴拋物線的解析式為y=1x1﹣8x+6;(1)設(shè)動點P的坐標(biāo)為(n,n+1),則C點的坐標(biāo)為(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴當(dāng)n=時,線段PC最大且為.(3)∵△PAC為直角三角形,i)若點P為直角頂點,則∠APC=90°.由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;ii)若點A為直角頂點,則∠PAC=90°.如圖1,過點A(,)作AN⊥x軸于點N,則ON=,AN=.過點A作AM⊥直線AB,交x軸于點M,則由題意易知,△AMN為等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).設(shè)直線AM的解析式為:y=kx+b,則:,解得,∴直線A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度電商行業(yè)電商團(tuán)隊保密協(xié)議與競業(yè)限制2篇
- 2024版股權(quán)轉(zhuǎn)讓附條件協(xié)議
- 場地使用協(xié)議范本
- 2024版海恒大廈樓頂空中花園建設(shè)協(xié)議版B版
- 二零二五年智能制造合伙公司合伙人協(xié)議書3篇
- 2024版技術(shù)服務(wù)外包合同協(xié)議
- 二零二五年度藝術(shù)品擔(dān)保合同范本匯編3篇
- 二零二五年度電競俱樂部主播招募與培養(yǎng)合同3篇
- 2024版錄音棚裝修與音頻設(shè)備集成合同3篇
- 2024版無爭議離婚合同模板版B版
- 新人教版九年級化學(xué)第三單元復(fù)習(xí)課件
- 北師大版四年級數(shù)學(xué)上冊口算天天練題卡2
- 滑模施工計算書及相關(guān)圖紙
- DB11T 2279-2024 社會單位消防安全評估規(guī)范
- 《電力電纜試驗》課件
- JJF 2122-2024 機(jī)動車測速儀現(xiàn)場測速標(biāo)準(zhǔn)裝置校準(zhǔn)規(guī)范
- 充電樁四方協(xié)議書范本
- 2024年南京鐵道職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案解析
- 2023年信息處理技術(shù)員教程
- 稽核管理培訓(xùn)
- 電梯曳引機(jī)生銹處理方案
評論
0/150
提交評論