2023-2024學年湖南省株洲市炎陵縣中考數(shù)學全真模擬試題含解析_第1頁
2023-2024學年湖南省株洲市炎陵縣中考數(shù)學全真模擬試題含解析_第2頁
2023-2024學年湖南省株洲市炎陵縣中考數(shù)學全真模擬試題含解析_第3頁
2023-2024學年湖南省株洲市炎陵縣中考數(shù)學全真模擬試題含解析_第4頁
2023-2024學年湖南省株洲市炎陵縣中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖南省株洲市炎陵縣中考數(shù)學全真模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.﹣= B.=±2C.a6÷a2=a3 D.(﹣a2)3=﹣a62.運用乘法公式計算(4+x)(4﹣x)的結果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x23.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG于點E,CF⊥AG于點F,則AE-GF的值為()A.1 B.2 C.32 D.4.在實數(shù)﹣3.5、2、0、﹣4中,最小的數(shù)是()A.﹣3.5 B.2 C.0 D.﹣45.反比例函數(shù)y=的圖象如圖所示,以下結論:①常數(shù)m<﹣1;②在每個象限內,y隨x的增大而增大;③若點A(﹣1,h),B(2,k)在圖象上,則h<k;④若點P(x,y)在上,則點P′(﹣x,﹣y)也在圖象.其中正確結論的個數(shù)是()A.1 B.2 C.3 D.46.下列運算正確的是()A.(a2)4=a6 B.a2?a3=a6 C. D.7.單項式2a3b的次數(shù)是()A.2 B.3 C.4 D.58.如圖,AB為⊙O的直徑,C為⊙O上的一動點(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當C在⊙O上運動時,點P的位置()

A.隨點C的運動而變化B.不變C.在使PA=OA的劣弧上D.無法確定9.計算結果是()A.0 B.1 C.﹣1 D.x10.一次數(shù)學測試后,隨機抽取九年級某班5名學生的成績如下:91,78,1,85,1.關于這組數(shù)據(jù)說法錯誤的是()A.極差是20 B.中位數(shù)是91 C.眾數(shù)是1 D.平均數(shù)是91二、填空題(共7小題,每小題3分,滿分21分)11.不等式組的非負整數(shù)解的個數(shù)是_____.12.如圖,10塊相同的小長方形墻磚拼成一個大長方形,設小長方形墻磚的長和寬分別為x厘米和y厘米,則列出的方程組為_____.13.如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點D,點P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.14.如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.15.若使代數(shù)式有意義,則x的取值范圍是_____.16.在矩形ABCD中,AB=6CM,E為直線CD上一點,連接AC,BE,若AC與BE交與點F,DE=2,則EF:BE=________。17.分解因式:4a2-4a+1=______.三、解答題(共7小題,滿分69分)18.(10分)中央電視臺的“朗讀者”節(jié)目激發(fā)了同學們的讀書熱情,為了引導學生“多讀書,讀好書”,某校對八年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發(fā)現(xiàn),學生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調查結果繪制了不完整的圖表,如圖所示:本數(shù)(本)頻數(shù)(人數(shù))頻率50.26180.36714880.16合計1(1)統(tǒng)計表中的________,________,________;請將頻數(shù)分布表直方圖補充完整;求所有被調查學生課外閱讀的平均本數(shù);若該校八年級共有1200名學生,請你分析該校八年級學生課外閱讀7本及以上的人數(shù).19.(5分)計算:(-)-2–2()+20.(8分)如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F(1)證明:PC=PE;(2)求∠CPE的度數(shù);(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關系,并說明理由.21.(10分)如圖,曲線BC是反比例函數(shù)y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),拋物線y=﹣x2+2bx的頂點記作A.(1)求k的值.(2)判斷點A是否可與點B重合;(3)若拋物線與BC有交點,求b的取值范圍.22.(10分)從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.求普通列車的行駛路程;若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.23.(12分)如圖,在四邊形中,為一條對角線,,,.為的中點,連結.(1)求證:四邊形為菱形;(2)連結,若平分,,求的長.24.(14分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BD⊥CE于點D,連接DO交BC于點M.(1)求證:BC平分∠DBA;(2)若,求的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)二次根式的運算法則,同類二次根式的判斷,開算術平方根,同底數(shù)冪的除法及冪的乘方運算.【詳解】A.不是同類二次根式,不能合并,故A選項錯誤;B.=2≠±2,故B選項錯誤;C.

a6÷a2=a4≠a3,故C選項錯誤;D.

(?a2)3=?a6,故D選項正確.故選D.【點睛】本題主要考查了二次根式的運算法則,開算術平方根,同底數(shù)冪的除法及冪的乘方運算,熟記法則是解題的關鍵.2、B【解析】

根據(jù)平方差公式計算即可得解.【詳解】,故選:B.【點睛】本題主要考查了整式的乘法公式,熟練掌握平方差公式的運算是解決本題的關鍵.3、D【解析】

設AE=x,則AB=2x,由矩形的性質得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結果.【詳解】設AE=x,

∵四邊形ABCD是矩形,

∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.【點睛】本題考查了矩形的性質、等腰直角三角形的判定與性質,勾股定理;熟練掌握矩形的性質和等腰直角三角形的性質,并能進行推理計算是解決問題的關鍵.4、D【解析】

根據(jù)任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小進行比較即可【詳解】在實數(shù)﹣3.5、2、0、﹣4中,最小的數(shù)是﹣4,故選D.【點睛】掌握實數(shù)比較大小的法則5、B【解析】

根據(jù)反比例函數(shù)的圖象的位置確定其比例系數(shù)的符號,利用反比例函數(shù)的性質進行判斷即可.【詳解】解:∵反比例函數(shù)的圖象位于一三象限,∴m>0故①錯誤;當反比例函數(shù)的圖象位于一三象限時,在每一象限內,y隨x的增大而減小,故②錯誤;將A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,∵m>0∴h<k故③正確;將P(x,y)代入y=得到m=xy,將P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上故④正確,故選:B.【點睛】本題考查了反比例函數(shù)的性質,牢記反比例函數(shù)的比例系數(shù)的符號與其圖象的關系是解決本題的關鍵.6、C【解析】

根據(jù)冪的乘方、同底數(shù)冪的乘法、二次根式的乘法、二次根式的加法計算即可.【詳解】A、原式=a8,所以A選項錯誤;B、原式=a5,所以B選項錯誤;C、原式=,所以C選項正確;D、與不能合并,所以D選項錯誤.故選:C.【點睛】本題考查了冪的乘方、同底數(shù)冪的乘法、二次根式的乘法、二次根式的加法,熟練掌握它們的運算法則是解答本題的關鍵.7、C【解析】分析:根據(jù)單項式的性質即可求出答案.詳解:該單項式的次數(shù)為:3+1=4故選C.點睛:本題考查單項式的次數(shù)定義,解題的關鍵是熟練運用單項式的次數(shù)定義,本題屬于基礎題型.8、B【解析】

因為CP是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,

又∵OC=OP,

∴∠OCP=∠OPC,

∴∠DCP=∠OPC,

∴CD∥OP,

又∵CD⊥AB,

∴OP⊥AB,

∴,

∴PA=PB.

∴點P是線段AB垂直平分線和圓的交點,

∴當C在⊙O上運動時,點P不動.

故選:B.【點睛】本題考查了圓心角、弦、弧之間的關系,以及平行線的判定和性質,在同圓或等圓中,等弧對等弦.9、C【解析】試題解析:.故選C.考點:分式的加減法.10、D【解析】

試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數(shù)為91,所以B選項正確;因為1出現(xiàn)了兩次,最多,所以眾數(shù)是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點:①眾數(shù)②中位數(shù)③平均數(shù)④極差.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集.【詳解】解:解①得:x≥﹣,解②得:x<1,∴不等式組的解集為﹣≤x<1,∴其非負整數(shù)解為0、1、2、3、4共1個,故答案為1.【點睛】本題考查了不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.12、【解析】

根據(jù)圖示可得:長方形的長可以表示為x+2y,長又是75厘米,故x+2y=75,長方形的寬可以表示為2x,或x+3y,故2x=3y+x,整理得x=3y,聯(lián)立兩個方程即可.【詳解】根據(jù)圖示可得,故答案是:.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是看懂圖示,分別表示出長方形的長和寬.13、6【解析】

根據(jù)等角對等邊,可得AC=BC,由等腰三角形的“三線合一”可得AD=BD=AB,利用直角三角形斜邊的中線等于斜邊的一半,可得CD=AB,由AP2-PB2=48

,利用平方差公式及線段的和差公式將其變形可得CD·PD=12,利用△PCD的面積=CD·PD可得.【詳解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB

,∴AD=BD=CD=AB,∵AP2-PB2=48

,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面積=CD·PD=6.故答案為6.【點睛】此題考查等腰三角形的性質,直角三角形的性質,解題關鍵在于利用等腰三角形的“三線合一14、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】

(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).15、x≠﹣2【解析】

直接利用分式有意義則其分母不為零,進而得出答案.【詳解】∵分式有意義,∴x的取值范圍是:x+2≠0,解得:x≠?2.故答案是:x≠?2.【點睛】本題考查了分式有意義的條件,解題的關鍵是熟練的掌握分式有意義的條件.16、4:7或2:5【解析】

根據(jù)E在CD上和CD的延長線上,運用相似三角形分類討論即可.【詳解】解:當E在線段CD上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=2k,BF=3k∴BE=BF+EF=5k∴EF:BE=2k∶5k=2∶5當當E在線段CD的延長線上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=4k,BF=3k∴BE=BF+EF=7k∴EF:BE=4k∶7k=4∶7故答案為:4:7或2:5.【點睛】本題以矩形為載體,考查了相似三角形的性質,解題的關鍵在于根據(jù)圖形分類討論,即數(shù)形結合的靈活應用.17、【解析】

根據(jù)完全平方公式的特點:兩項平方項的符號相同,另一項是兩底數(shù)積的2倍,本題可用完全平方公式分解因式.【詳解】解:.故答案為.【點睛】本題考查用完全平方公式法進行因式分解,能用完全平方公式法進行因式分解的式子的特點需熟練掌握.三、解答題(共7小題,滿分69分)18、(1)10,0.28,50(2)圖形見解析(3)6.4(4)528【解析】分析:(1)首先求出總人數(shù),再根據(jù)頻率,總數(shù),頻數(shù)的關系即可解決問題;(2)根據(jù)a的值畫出條形圖即可;(3)根據(jù)平均數(shù)的定義計算即可;(4)用樣本估計總體的思想解決問題即可;詳解:(1)由題意c==50,a=50×0.2=10,b==0.28,c=50;故答案為10,0.28,50;(2)將頻數(shù)分布表直方圖補充完整,如圖所示:(3)所有被調查學生課外閱讀的平均本數(shù)為:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)該校七年級學生課外閱讀7本及以上的人數(shù)為:(0.28+0.16)×1200=528(人).點睛:本題考查頻數(shù)分布直方圖、扇形統(tǒng)計圖、樣本估計總體等知識,解題的關鍵是熟練掌握基本概念,靈活運用所學知識解決問題,屬于中考??碱}型.19、0【解析】

本題涉及負指數(shù)冪、二次根式化簡和絕對值3個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果.【詳解】原式.【點睛】本題主要考查負指數(shù)冪、二次根式化簡和絕對值,熟悉掌握是關鍵.20、(1)證明見解析(2)90°(3)AP=CE【解析】

(1)、根據(jù)正方形得出AB=BC,∠ABP=∠CBP=45°,結合PB=PB得出△ABP≌△CBP,從而得出結論;(2)、根據(jù)全等得出∠BAP=∠BCP,∠DAP=∠DCP,根據(jù)PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先證明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,從而得出∠CPF=∠EDF=60°,然后得出△EPC是等邊三角形,從而得出AP=CE.【詳解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等邊三角形,∴PC=CE,∴AP=CE考點:三角形全等的證明21、(1)12;(2)點A不與點B重合;(3)【解析】

(1)把B、C兩點代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,從而求得k的值;(2)由拋物線解析式得到頂點A(b,b2),如果點A與點B重合,則有b=4,且b2=3,顯然不成立;(3)當拋物線經過點B(4,3)時,解得,b=,拋物線右半支經過點B;當拋物線經過點C,解得,b=,拋物線右半支經過點C;從而求得b的取值范圍為≤b≤.【詳解】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函數(shù)的圖象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4×[1﹣(﹣2)]=12;(2)∵m=﹣2,∴B(4,3),∵拋物線y=﹣x2+2bx=﹣(x﹣b)2+b2,∴A(b,b2).若點A與點B重合,則有b=4,且b2=3,顯然不成立,∴點A不與點B重合;(3)當拋物線經過點B(4,3)時,有3=﹣42+2b×4,解得,b=,顯然拋物線右半支經過點B;當拋物線經過點C(6,2)時,有2=﹣62+2b×6,解得,b=,這時仍然是拋物線右半支經過點C,∴b的取值范圍為≤b≤.【點睛】本題考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,解題的關鍵是學會用討論的思想思考問題.22、(1)520千米;(2)300千米/時.【解析】試題分析:(1)根據(jù)普通列車的行駛路程=高鐵的行駛路程×1.3得出答案;(2)首先設普通列車的平均速度為x千米/時,則高鐵平均速度為2.5x千米/時,根據(jù)題意列出分式方程求出未知數(shù)x的值.試題解析:(1)依題意可得,普通列車的行駛路程為400×1.3=520(千米)(2)設普通列車的平均速度為x千米/時,則高鐵平均速度為2.5x千米/時依題意有:=3解得:x=120經檢驗:x=120分式方程的解且符合題意高鐵平均速度:2.5×120=3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論