人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納_第1頁(yè)
人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納_第2頁(yè)
人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納_第3頁(yè)
人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納_第4頁(yè)
人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共1頁(yè),當(dāng)前為第1頁(yè)。人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共1頁(yè),當(dāng)前為第1頁(yè)。1.人教版高三數(shù)學(xué)學(xué)問(wèn)點(diǎn)歸納

符合肯定條件的動(dòng)點(diǎn)所形成的圖形,或者說(shuō),符合肯定條件的點(diǎn)的全體所組成的集合,叫做滿意該條件的點(diǎn)的軌跡。

軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。

一、求動(dòng)點(diǎn)的軌跡方程的根本步驟

1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

2、寫(xiě)出點(diǎn)M的集合;

3、列出方程=0;

4、化簡(jiǎn)方程為最簡(jiǎn)形式;

5、檢驗(yàn)。

二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的”方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共2頁(yè),當(dāng)前為第2頁(yè)。2、定義法:假如能夠確定動(dòng)點(diǎn)的軌跡滿意某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。

3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿意的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先查找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

5、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

③列式——列出動(dòng)點(diǎn)p所滿意的關(guān)系式;

④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);

⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

2.人教版高三數(shù)學(xué)學(xué)問(wèn)點(diǎn)歸納

第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面對(duì)量、不等式、立體幾何等九大章節(jié)。

人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共3頁(yè),當(dāng)前為第3頁(yè)。主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;其次是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。

其次:平面對(duì)量和三角函數(shù)。

重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)把握公式,重點(diǎn)把握五組根本公式。其次,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)把握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比擬小。

第三:數(shù)列。

數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

第四:空間向量和立體幾何。

在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

第五:概率和統(tǒng)計(jì)。

這一板塊主要是屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,固然應(yīng)當(dāng)把握下面幾個(gè)方面,第一……等可能的概率,其次……大事,第三是獨(dú)立大事,還有獨(dú)立重復(fù)大事發(fā)生的概率。

第六:解析幾何。

這是我們比擬頭疼的問(wèn)題,是整個(gè)試卷里難度比擬大,計(jì)算量的題,人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共4頁(yè),當(dāng)前為第4頁(yè)。固然這一類(lèi)題,我總結(jié)下面五類(lèi)??嫉摹鳖}型,包括第一類(lèi)所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容??忌鷳?yīng)當(dāng)把握它的通法,其次類(lèi)我們所講的動(dòng)點(diǎn)問(wèn)題,第三類(lèi)是弦長(zhǎng)問(wèn)題,第四類(lèi)是對(duì)稱問(wèn)題,這也是2022年高考已經(jīng)考過(guò)的一點(diǎn),第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,固然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的緣由,往往有這個(gè)緣由,我們所選方法不是很恰當(dāng),因此,在這一章里我們要把握比擬好的算法,來(lái)提高我們做題的精確度,這是我們所講的第六大板塊。

第七:押軸題。

考生在備考復(fù)習(xí)時(shí),應(yīng)當(dāng)重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比擬大,我建議考生,實(shí)行分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

3.人教版高三數(shù)學(xué)學(xué)問(wèn)點(diǎn)歸納

1、圓柱體:

外表積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

2、圓錐體:

外表積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

3、正方體

人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共5頁(yè),當(dāng)前為第5頁(yè)。a-邊長(zhǎng),S=6a2,V=a3

4、長(zhǎng)方體

a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc

5、棱柱

S-底面積h-高V=Sh

6、棱錐

S-底面積h-高V=Sh/3

7、棱臺(tái)

S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

8、擬柱體

S1-上底面積,S2-下底面積,S0-中截面積

h-高,V=h(S1+S2+4S0)/6

9、圓柱

r-底半徑,h-高,C—底面周長(zhǎng)

S底—底面積,S側(cè)—側(cè)面積,S表—外表積C=2πr

S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圓柱

R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

11、直圓錐

r-底半徑h-高V=πr^2h/3

人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共6頁(yè),當(dāng)前為第6頁(yè)。12、圓臺(tái)

r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

13、球

r-半徑d-直徑V=4/3πr^3=πd^3/6

14、球缺

h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球臺(tái)

r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

16、圓環(huán)體

R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑

V=2π2Rr2=π2Dd2/4

17、桶狀體

D-桶腹直徑d-桶底直徑h-桶高

V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

4.人教版高三數(shù)學(xué)學(xué)問(wèn)點(diǎn)歸納

1.函數(shù)的奇偶性

(1)若f(x)是偶函數(shù),那么f(x)=f(-x);

(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

(3)推斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共7頁(yè),當(dāng)前為第7頁(yè)。0);

(4)若所給函數(shù)的解析式較為簡(jiǎn)單,應(yīng)先化簡(jiǎn),再推斷其奇偶性;

(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有一樣的單調(diào)性;偶函數(shù)在對(duì)稱的.單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2.復(fù)合函數(shù)的有關(guān)問(wèn)題

(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);討論函數(shù)的問(wèn)題肯定要留意定義域優(yōu)先的原則。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

3.函數(shù)圖像(或方程曲線的對(duì)稱性)

(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

(2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共8頁(yè),當(dāng)前為第8頁(yè)。關(guān)于直線x=a對(duì)稱;

(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

4.函數(shù)的周期性

(1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

(6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

5.方程k=f(x)有解k∈D(D為f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共9頁(yè),當(dāng)前為第9頁(yè)。(4)alogaN=N(a>0,a≠1,N>0);

8.推斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

(1)A中元素必需都有象且;

(2)B中元素不肯定都有原象,并且A中不同元素在B中可以有一樣的象;

9.能嫻熟地用定義證明函數(shù)的單調(diào)性,求反函數(shù),推斷函數(shù)的奇偶性。

10.對(duì)于反函數(shù),應(yīng)把握以下一些結(jié)論:

(1)定義域上的單調(diào)函數(shù)必有反函數(shù);

(2)奇函數(shù)的反函數(shù)也是奇函數(shù);

(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

(4)周期函數(shù)不存在反函數(shù);

(5)互為反函數(shù)的兩個(gè)函數(shù)具有一樣的單調(diào)性;

(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合

二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

12.依據(jù)單調(diào)性

利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題;

13.恒成立問(wèn)題的處理方法

人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共10頁(yè),當(dāng)前為第10頁(yè)。(1)分別參數(shù)法;

(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

5.人教版高三數(shù)學(xué)學(xué)問(wèn)點(diǎn)歸納

一、函數(shù)的定義域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被開(kāi)方數(shù)大于等于零;

3、對(duì)數(shù)的真數(shù)大于零;

4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;

5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

6、假如函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

二、函數(shù)的解析式的常用求法:

1、定義法;

2、換元法;

3、待定系數(shù)法;

4、函數(shù)方程法;

5、參數(shù)法;

6、配方法

三、函數(shù)的值域的常用求法:

1、換元法;

人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共11頁(yè),當(dāng)前為第11頁(yè)。2、配方法;

3、判別式法;

4、幾何法;

5、不等式法;

6、單調(diào)性法;

7、直接法

四、函數(shù)的最值的常用求法:

1、配方法;

2、換元法;

3、不等式法;

4、幾何法;

5、單調(diào)性法

五、函數(shù)單調(diào)性的常用結(jié)論:

1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)。

2、若f(x)為增(減)函數(shù),則—f(x)為減(增)函數(shù)。

3、若f(x)與g(x)的單調(diào)性一樣,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性一樣,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。

人教版高三數(shù)學(xué)知識(shí)點(diǎn)歸納全文共12頁(yè),當(dāng)前為第12頁(yè)。5、常用函數(shù)的單調(diào)性解答:比擬大小、求值域、求最值、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論