版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省中學(xué)山市楊仙逸中學(xué)2022年中考數(shù)學(xué)適應(yīng)性模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.圓錐的底面半徑為2,母線長為4,則它的側(cè)面積為()A.8π B.16π
C.4π D.4π2.地球平均半徑約等于6400000米,6400000用科學(xué)記數(shù)法表示為()A.64×105 B.6.4×105 C.6.4×106 D.6.4×1073.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD.則∠BDE的度數(shù)為()A.76° B.74° C.72° D.70°4.下列說法正確的是()A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命采用普查法B.已知一組數(shù)據(jù)1,a,4,4,9,它的平均數(shù)是4,則這組數(shù)據(jù)的方差是7.6C.12名同學(xué)中有兩人的出生月份相同是必然事件D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”中,任取其中一個圖形,恰好既是中心對稱圖形,又是軸對稱圖形的概率是5.下列計算正確的是()A.a(chǎn)2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a(chǎn)2?a3=a6 D.a(chǎn)8÷a2=a46.一個多邊形的每個內(nèi)角均為120°,則這個多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形7.下列說法正確的是()A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定C.“明天降雨的概率為”,表示明天有半天都在降雨D.了解一批電視機的使用壽命,適合用普查的方式8.如圖,平行于x軸的直線與函數(shù),的圖象分別相交于A,B兩點,點A在點B的右側(cè),C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.9.若二次函數(shù)y=ax2+bx+c的x與y的部分對應(yīng)值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標(biāo)是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)10.如圖所示是由相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.A、B兩地相距20km,甲乙兩人沿同一條路線從A地到B地.甲先出發(fā),勻速行駛,甲出發(fā)1小時后乙再出發(fā),乙以2km/h的速度度勻速行駛1小時后提高速度并繼續(xù)勻速行駛,結(jié)果比甲提前到達.甲、乙兩人離開A地的距離y(km)與時間t(h)的關(guān)系如圖所示,則甲出發(fā)_____小時后和乙相遇.12.化簡:=.13.如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數(shù)y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為1.則k的值為_____.14.(2017黑龍江省齊齊哈爾市)如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,沿底邊BC上的高AD剪成兩個三角形,用這兩個三角形拼成平行四邊形,則這個平行四邊形較長的對角線的長是______.15.若,則=.16.21世紀(jì)納米技術(shù)將被廣泛應(yīng)用.納米是長度的度量單位,1納米=0.000000001米,則12納米用科學(xué)記數(shù)法表示為_______米.三、解答題(共8題,共72分)17.(8分)如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別在OA,OC上.(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.18.(8分)如圖,AB是⊙O的直徑,⊙O過BC的中點D,DE⊥AC.求證:△BDA∽△CED.19.(8分)如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.20.(8分)如圖,在平面直角坐標(biāo)系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以O(shè)A,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當(dāng)兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標(biāo)為,直線OB的函數(shù)表達式為;(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式;并求t為何值時,S有最大值,并求出最大值.21.(8分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.22.(10分)如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經(jīng)過點C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號).23.(12分)如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點A(0,1),交x軸于點B.直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,且在點D的上方,設(shè)P(1,n).求直線AB的解析式和點B的坐標(biāo);求△ABP的面積(用含n的代數(shù)式表示);當(dāng)S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標(biāo).24.如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側(cè)),與軸交于點,頂點為.(1)當(dāng)時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側(cè)上存在一點,使,求點的坐標(biāo);(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標(biāo).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
解:底面半徑為2,底面周長=4π,側(cè)面積=×4π×4=8π,故選A.2、C【解析】
由科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:6400000=6.4×106,故選C.點睛:此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.3、B【解析】
直接利用三角形內(nèi)角和定理得出∠ABC的度數(shù),再利用翻折變換的性質(zhì)得出∠BDE的度數(shù).【詳解】解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故選:B.【點睛】此題主要考查了三角形內(nèi)角和定理,正確掌握三角形內(nèi)角和定理是解題關(guān)鍵.4、B【解析】
分別用方差、全面調(diào)查與抽樣調(diào)查、隨機事件及概率的知識逐一進行判斷即可得到答案.【詳解】A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命時,檢測范圍比較大,因此適宜采用抽樣調(diào)查的方法,故本選項錯誤;B.根據(jù)平均數(shù)是4求得a的值為2,則方差為[(1?4)2+(2?4)2+(4?4)2+(4?4)2+(9?4)2]=7.6,故本選項正確;C.12個同學(xué)的生日月份可能互不相同,故本事件是隨機事件,故錯誤;D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”六個圖形中有3個既是軸對稱圖形,又是中心對稱圖形,所以,恰好既是中心對稱圖形,又是軸對稱圖形的概率是,故本選項錯誤.故答案選B.【點睛】本題考查的知識點是概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件,解題的關(guān)鍵是熟練的掌握概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件.5、B【解析】
解:A.a(chǎn)2+a2=2a2,故A錯誤;C、a2a3=a5,故C錯誤;D、a8÷a2=a6,故D錯誤;本題選B.考點:合同類型、同底數(shù)冪的乘法、同底數(shù)冪的除法、積的乘方6、C【解析】由題意得,180°(n-2)=120°,解得n=6.故選C.7、B【解析】
利用事件的分類、普查和抽樣調(diào)查的特點、概率的意義以及方差的性質(zhì)即可作出判斷.【詳解】解:A、擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是可能事件,此選項錯誤;B、甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,此選項正確;C、“明天降雨的概率為”,表示明天有可能降雨,此選項錯誤;D、解一批電視機的使用壽命,適合用抽查的方式,此選項錯誤;故選B.【點睛】本題考查方差;全面調(diào)查與抽樣調(diào)查;隨機事件;概率的意義,掌握基本概念是解題關(guān)鍵.8、A【解析】【分析】設(shè),,根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征得出,根據(jù)三角形的面積公式得到,即可求出.【詳解】軸,,B兩點縱坐標(biāo)相同,設(shè),,則,,,,故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,三角形的面積,熟知點在函數(shù)的圖象上,則點的坐標(biāo)滿足函數(shù)的解析式是解題的關(guān)鍵.9、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點坐標(biāo).詳解:當(dāng)或時,,當(dāng)時,,,解得,二次函數(shù)解析式為,拋物線的頂點坐標(biāo)為,故選C.點睛:本題主要考查二次函數(shù)的性質(zhì),利用條件求得二次函數(shù)的解析式是解題的關(guān)鍵.10、C【解析】A、B、D不是該幾何體的視圖,C是主視圖,故選C.【點睛】主視圖是由前面看到的圖形,俯視圖是由上面看到的圖形,左視圖是由左面看到的圖形,能看到的線畫實線,看不到的線畫虛線.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
由圖象得出解析式后聯(lián)立方程組解答即可.【詳解】由圖象可得:y甲=4t(0≤t≤5);y乙=;由方程組,解得t=.故答案為.【點睛】此題考查一次函數(shù)的應(yīng)用,關(guān)鍵是由圖象得出解析式解答.12、2【解析】
根據(jù)算術(shù)平方根的定義,求數(shù)a的算術(shù)平方根,也就是求一個正數(shù)x,使得x2=a,則x就是a的算術(shù)平方根,特別地,規(guī)定0的算術(shù)平方根是0.【詳解】∵22=4,∴=2.【點睛】本題考查求算術(shù)平方根,熟記定義是關(guān)鍵.13、3【解析】
連接OA.根據(jù)反比例函數(shù)的對稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點D的坐標(biāo).設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),根據(jù)S△OAB=2,得出a-b=2
①.根據(jù)S△OAC=2,得出-a-b=2
②,①與②聯(lián)立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設(shè)直線y=x+2與y軸交于點D,則D(0,2),設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2
①.過A點作AM⊥x軸于點M,過C點作CN⊥x軸于點N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2
②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的性質(zhì),反比例函數(shù)圖象上點的坐標(biāo)特征,三角形的面積,待定系數(shù)法求函數(shù)的解析式等知識,綜合性較強,難度適中.根據(jù)反比例函數(shù)的對稱性得出OB=OC是解題的突破口.14、10,,.【解析】解:如圖,過點A作AD⊥BC于點D,∵△ABC邊AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如圖①所示:可得四邊形ACBD是矩形,則其對角線長為:10;如圖②所示:AD=8,連接BC,過點C作CE⊥BD于點E,則EC=8,BE=2BD=12,則BC=;如圖③所示:BD=6,由題意可得:AE=6,EC=2BE=16,故AC==.故答案為10,,.15、1.【解析】試題分析:有意義,必須,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案為1.考點:二次根式有意義的條件.16、1.2×10﹣1.【解析】
絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10?n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【點睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10?n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.三、解答題(共8題,共72分)17、(1)見解析;(2)見解析.【解析】試題分析:(1)選?、佗?,利用ASA判定△BEO≌△DFO;也可選取②③,利用AAS判定△BEO≌△DFO;還可選取①③,利用SAS判定△BEO≌△DFO;(2)根據(jù)△BEO≌△DFO可得EO=FO,BO=DO,再根據(jù)等式的性質(zhì)可得AO=CO,根據(jù)兩條對角線互相平分的四邊形是平行四邊形可得結(jié)論.試題解析:證明:(1)選?、佗冢咴凇鰾EO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四邊形ABCD是平行四邊形.點睛:此題主要考查了平行四邊形的判定,以及全等三角形的判定,關(guān)鍵是掌握兩條對角線互相平分的四邊形是平行四邊形.18、證明見解析.【解析】
不難看出△BDA和△CED都是直角三角形,證明△BDA∽△CED,只需要另外找一對角相等即可,由于AD是△ABC的中線,又可證AD⊥BC,即AD為BC邊的中垂線,從而得到∠B=∠C,即可證相似.【詳解】∵AB是⊙O直徑,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【點睛】本題重點考查了圓周角定理、直徑所對的圓周角為直角及相似三角形判定等知識的綜合運用.19、(1)見解析;(2)見解析【解析】
(1)從所給的條件可知,DE是△ABC中位線,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四邊形BCFE是平行四邊形,又因為BE=FE,所以四邊形BCFE是菱形.(2)因為∠BCF=120°,所以∠EBC=60°,所以菱形的邊長也為4,求出菱形的高面積就可.【詳解】解:(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四邊形BCFE是平行四邊形.又∵BE=FE,∴四邊形BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等邊三角形.∴菱形的邊長為4,高為.∴菱形的面積為4×=.20、(1),;(2),1,1.【解析】
(1)根據(jù)四邊形OABC為矩形即可求出點B坐標(biāo),設(shè)直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點的坐標(biāo)為,表達出△OMP的面積即可,利用二次函數(shù)的性質(zhì)求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點B,設(shè)直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點的坐標(biāo)為,∴當(dāng)時,有最大值1.【點睛】本題考查了二次函數(shù)與幾何動態(tài)問題,解題的關(guān)鍵是根據(jù)題意表達出點的坐標(biāo),利用幾何知識列出函數(shù)關(guān)系式.21、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)矩形的性質(zhì)得到AB=CD,∠B=∠D=90°,根據(jù)折疊的性質(zhì)得到∠E=∠B,AB=AE,根據(jù)全等三角形的判定定理即可得到結(jié)論;(2)根據(jù)全等三角形的性質(zhì)得到AF=CF,EF=DF,根據(jù)勾股定理得到DF=3,根據(jù)三角形的面積公式即可得到結(jié)論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對角線AC翻折,點B落在點E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點睛:本題考查了翻折變換﹣折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.22、(1)詳見解析;(2);【解析】
(1)連接OC,根據(jù)垂直的定義得到∠AOF=90°,根據(jù)三角形的內(nèi)角和得到∠ACE=90°+∠A,根據(jù)等腰三角形的性質(zhì)得到∠OCE=90°,得到OC⊥CE,于是得到結(jié)論;
(2)根據(jù)圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】:(1)連接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=180°,
∴∠ACE=90°+∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
∴∠OCE=90°,
∴OC⊥CE,
∴EM是⊙O的切線;
(2)∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
∴∠ACO=∠BCE,
∵∠A=∠E,
∴∠A=∠ACO=∠BCE=∠E,
∴∠ABC=∠BCO+∠E=2∠A,
∴∠A=30°,
∴∠BOC=60°,
∴△BOC是等邊三角形,
∴OB=BC=,
∴陰影部分的面積=,【點睛】本題考查了切線的判定,等腰三角形的判定和性質(zhì),扇形的面積計算,連接OC是解題的關(guān)鍵.23、(1)AB的解析式是y=-x+1.點B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標(biāo)代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標(biāo);(2)過點A作AM⊥PD,垂足為M,求得AM的長,即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當(dāng)S△ABP=2時,n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點求解.試題解析:(1)∵y=-x+b經(jīng)過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當(dāng)y=0時,0=-x+1,解得x=3,∴點B(3,0).(2)過點A作AM⊥PD,垂足為M,則有AM=1,∵x=1時,y=-x+1=,P在點D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點B(3,0),可知點B到直線x=1的距離為2,即△BDP的邊PD上的高長為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當(dāng)S△ABP=2時,n-1=2,解得n=2,∴點P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過點C作CN⊥直線x=1于點N.∵∠CPB=90°,∠EPB=45°,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公大樓幕墻施工安裝合同
- 電子元器件瑕疵管理方案
- 物業(yè)管理集團福利費管理手冊
- 家具行業(yè)項目招投標(biāo)信息表
- 高空農(nóng)業(yè)噴灑合同
- 2025個人信用貸款借款合同
- 臨沂生態(tài)農(nóng)場租賃合同
- 門店市場調(diào)研渠道分析
- 醫(yī)用高值耗材管理指南
- 智能家居大清包施工合同
- 新《安全生產(chǎn)法》解讀PPT課件
- E車E拍行車記錄儀說明書 - 圖文-
- 人才梯隊-繼任計劃-建設(shè)方案(珍貴)
- WLANAP日常操作維護規(guī)范
- 《健身氣功》(選修)教學(xué)大綱
- 王家?guī)r隧道工程地質(zhì)勘察報告(總結(jié))
- GE公司燃氣輪機組支持軸承結(jié)構(gòu)及性能分析
- 《昆明的雨》優(yōu)質(zhì)課一等獎(課堂PPT)
- 油氣田地面建設(shè)工程ppt課件
- 電動蝶閥安裝步驟說明
- 全自動電鍍流水線操作說明書(共12頁)
評論
0/150
提交評論