版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022學(xué)年上海市上海民辦張江集團(tuán)校中考沖刺卷數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.中國傳統(tǒng)扇文化有著深厚的底蘊(yùn),下列扇面圖形是中心對稱圖形的是()A. B. C. D.2.如圖,將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為().A.60° B.75° C.85° D.90°3.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點(diǎn)落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.4.方程有兩個實(shí)數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<15.一個布袋內(nèi)只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機(jī)摸出一個球后放回攪勻,再隨機(jī)摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.6.如圖,是半圓的直徑,點(diǎn)、是半圓的三等分點(diǎn),弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.7.益陽市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數(shù)見下表:文化程度高中大專本科碩士博士人數(shù)9172095關(guān)于這組文化程度的人數(shù)數(shù)據(jù),以下說法正確的是:()A.眾數(shù)是20 B.中位數(shù)是17 C.平均數(shù)是12 D.方差是268.計算1+2+22+23+…+22010的結(jié)果是()A.22011–1 B.22011+1C. D.9.如圖,點(diǎn)P是以O(shè)為圓心,AB為直徑的半圓上的動點(diǎn),AB=2,設(shè)弦AP的長為x,△APO的面積為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是A.B.C.D.10.據(jù)史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒有用鋼筋,也沒有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m二、填空題(本大題共6個小題,每小題3分,共18分)11.閱讀理解:引入新數(shù)i,新數(shù)i滿足分配律、結(jié)合律、交換律,已知i2=﹣1,那么(1+i)?(1﹣i)的平方根是_____.12.已知:如圖,AD、BE分別是△ABC的中線和角平分線,AD⊥BE,AD=BE=6,則AC的長等于______.13.已知一個正數(shù)的平方根是3x-2和5x-6,則這個數(shù)是_____.14.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D'處,則點(diǎn)C的對應(yīng)點(diǎn)C'的坐標(biāo)為_____.15.如圖,點(diǎn)A1,B1,C1,D1,E1,F(xiàn)1分別是正六邊形ABCDEF六條邊的中點(diǎn),連接AB1,BC1,CD1,DE1,EF1,F(xiàn)A1后得到六邊形GHIJKL,則S六邊形GHIJKI:S六邊形ABCDEF的值為____.16.如圖,AB、CD相交于點(diǎn)O,AD=CB,請你補(bǔ)充一個條件,使得△AOD≌△COB,你補(bǔ)充的條件是_____.三、解答題(共8題,共72分)17.(8分)某商城銷售A,B兩種自行車型自行車售價為2
100元輛,B型自行車售價為1
750元輛,每輛A型自行車的進(jìn)價比每輛B型自行車的進(jìn)價多400元,商城用80
000元購進(jìn)A型自行車的數(shù)量與用64
000元購進(jìn)B型自行車的數(shù)量相等.求每輛A,B兩種自行車的進(jìn)價分別是多少?現(xiàn)在商城準(zhǔn)備一次購進(jìn)這兩種自行車共100輛,設(shè)購進(jìn)A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進(jìn)B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤不低于13
000元,求獲利最大的方案以及最大利潤.18.(8分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.19.(8分)如圖,點(diǎn)A.F、C.D在同一直線上,點(diǎn)B和點(diǎn)E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.(1)求證:四邊形BCEF是平行四邊形,(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時,四邊形BCEF是菱形.20.(8分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D是邊BC上任意一點(diǎn),連接AD,過點(diǎn)C作CE⊥AD于點(diǎn)E.(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長;(2)如圖2,過點(diǎn)C作CF⊥CE,且CF=CE,連接FE并延長交AB于點(diǎn)M,連接BF,求證:AM=BM.21.(8分)如圖,正方形ABCD中,M為BC上一點(diǎn),F(xiàn)是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N.求證:△ABM∽△EFA;若AB=12,BM=5,求DE的長.22.(10分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點(diǎn)為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長.23.(12分)如圖,已知點(diǎn)在反比例函數(shù)的圖象上,過點(diǎn)作軸,垂足為,直線經(jīng)過點(diǎn),與軸交于點(diǎn),且,.求反比例函數(shù)和一次函數(shù)的表達(dá)式;直接寫出關(guān)于的不等式的解集.24.如圖,在梯形中,,,,,點(diǎn)為邊上一動點(diǎn),作⊥,垂足在邊上,以點(diǎn)為圓心,為半徑畫圓,交射線于點(diǎn).(1)當(dāng)圓過點(diǎn)時,求圓的半徑;(2)分別聯(lián)結(jié)和,當(dāng)時,以點(diǎn)為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點(diǎn),試通過計算說明線段和的比值為定值,并求出次定值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)中心對稱圖形的概念進(jìn)行分析.【詳解】A、不是中心對稱圖形,故此選項(xiàng)錯誤;
B、不是中心對稱圖形,故此選項(xiàng)錯誤;
C、是中心對稱圖形,故此選項(xiàng)正確;
D、不是中心對稱圖形,故此選項(xiàng)錯誤;
故選:C.【點(diǎn)睛】考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.2、C【解析】試題分析:根據(jù)旋轉(zhuǎn)的性質(zhì)知,∠EAC=∠BAD=65°,∠C=∠E=70°.如圖,設(shè)AD⊥BC于點(diǎn)F.則∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度數(shù)為85°.故選C.考點(diǎn):旋轉(zhuǎn)的性質(zhì).3、A【解析】
首先利用勾股定理計算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【詳解】∵AB=3,AD=4,∴DC=3∴根據(jù)勾股定理得AC=5根據(jù)折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.4、D【解析】當(dāng)k=1時,原方程不成立,故k≠1,當(dāng)k≠1時,方程為一元二次方程.∵此方程有兩個實(shí)數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.5、D【解析】試題分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,隨機(jī)摸出一個球后放回攪勻,再隨機(jī)摸出一個球所以的結(jié)果有9種,兩次摸出的球都是黑球的結(jié)果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點(diǎn):用列表法求概率.6、D【解析】
連接OC、OD、BD,根據(jù)點(diǎn)C,D是半圓O的三等分點(diǎn),推導(dǎo)出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點(diǎn)C、D是半圓O的三等分點(diǎn),∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點(diǎn)睛】本題主要考查扇形面積的計算和幾何概率問題:概率=相應(yīng)的面積與總面積之比,解題的關(guān)鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.7、C【解析】
根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的概念求解.【詳解】A、這組數(shù)據(jù)中9出現(xiàn)的次數(shù)最多,眾數(shù)為9,故本選項(xiàng)錯誤;B、因?yàn)楣灿?組,所以第3組的人數(shù)為中位數(shù),即9是中位數(shù),故本選項(xiàng)錯誤;C、平均數(shù)==12,故本選項(xiàng)正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項(xiàng)錯誤.故選C.【點(diǎn)睛】本題考查了中位數(shù)、平均數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點(diǎn)的概念.8、A【解析】
可設(shè)其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【詳解】設(shè)S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【點(diǎn)睛】本題考查了因式分解的應(yīng)用;設(shè)出和為S,并求出2S進(jìn)行做差求解是解題關(guān)鍵.9、A?!窘馕觥咳鐖D,∵根據(jù)三角形面積公式,當(dāng)一邊OA固定時,它邊上的高最大時,三角形面積最大,∴當(dāng)PO⊥AO,即PO為三角形OA邊上的高時,△APO的面積y最大。此時,由AB=2,根據(jù)勾股定理,得弦AP=x=?!喈?dāng)x=時,△APO的面積y最大,最大面積為y=。從而可排除B,D選項(xiàng)。又∵當(dāng)AP=x=1時,△APO為等邊三角形,它的面積y=,∴此時,點(diǎn)(1,)應(yīng)在y=的一半上方,從而可排除C選項(xiàng)。故選A。10、C【解析】連結(jié)OA,如圖所示:
∵CD⊥AB,
∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】
根據(jù)平方根的定義進(jìn)行計算即可.【詳解】.解:∵i2=﹣1,∴(1+i)?(1﹣i)=1﹣i2=2,∴(1+i)?(1﹣i)的平方根是±,故答案為±.【點(diǎn)睛】本題考查平方根以及實(shí)數(shù)的運(yùn)算,解題關(guān)鍵掌握平方根的定義.12、9【解析】試題分析:如圖,過點(diǎn)C作CF⊥AD交AD的延長線于點(diǎn)F,可得BE∥CF,易證△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分線且AD⊥BE,BG是公共邊,可證得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=952.考點(diǎn):全等三角形的判定及性質(zhì);相似三角形的判定及性質(zhì);勾股定理.13、【解析】
試題解析:根據(jù)題意,得:解得:故答案為【點(diǎn)睛】:一個正數(shù)有2個平方根,它們互為相反數(shù).14、(2,)【解析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).15、.【解析】
設(shè)正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a.求出正六邊形的邊長,根據(jù)S六邊形GHIJKI:S六邊形ABCDEF=()2,計算即可;【詳解】設(shè)正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a,作A1M⊥FA交FA的延長線于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,F(xiàn)M=5a,在Rt△A1FM中,F(xiàn)A1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F(xiàn)1L=a,根據(jù)對稱性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六邊形GHIJKI:S六邊形ABCDEF=()2=,故答案為:.【點(diǎn)睛】本題考查正六邊形與圓,解直角三角形,勾股定理,相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)解決問題.16、∠A=∠C或∠ADC=∠ABC【解析】
本題證明兩三角形全等的三個條件中已經(jīng)具備一邊和一角,所以只要再添加一組對應(yīng)角或邊相等即可.【詳解】添加條件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根據(jù)AAS判定△AOD≌△COB,添加∠ADC=∠ABC根據(jù)AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【點(diǎn)睛】本題考查了三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件是正確解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)每輛A型自行車的進(jìn)價為2000元,每輛B型自行車的進(jìn)價為1600元;(2)當(dāng)購進(jìn)A型自行車34輛,B型自行車66輛時獲利最大,最大利潤為13300元.【解析】
(1)設(shè)每輛B型自行車的進(jìn)價為x元,則每輛A型自行車的進(jìn)價為(x+10)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;
(2)由總利潤=單輛利潤×輛數(shù),列出y與x的關(guān)系式,利用一次函數(shù)性質(zhì)確定出所求即可.【詳解】(1)設(shè)每輛B型自行車的進(jìn)價為x元,則每輛A型自行車的進(jìn)價為(x+10)元,根據(jù)題意,得=,解得x=1600,經(jīng)檢驗(yàn),x=1600是原方程的解,x+10=1600+10=2000,答:每輛A型自行車的進(jìn)價為2000元,每輛B型自行車的進(jìn)價為1600元;(2)由題意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根據(jù)題意,得,解得:33≤m≤1,∵m為正整數(shù),∴m=34,35,36,37,38,39,1.∵y=﹣50m+15000,k=﹣50<0,∴y隨m的增大而減小,∴當(dāng)m=34時,y有最大值,最大值為:﹣50×34+15000=13300(元).答:當(dāng)購進(jìn)A型自行車34輛,B型自行車66輛時獲利最大,最大利潤為13300元.【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用、分式方程的應(yīng)用及一元一次不等式組的應(yīng)用.仔細(xì)審題,找出題目中的數(shù)量關(guān)系是解答本題的關(guān)鍵.18、(1)證明見解析;(2)S平行四邊形ABCD=3.【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根據(jù)平行線的判定得出AD∥BC,根據(jù)平行四邊形的判定推出即可;(2)證明△ABE是等邊三角形,得出AE=AB=2,由直角三角形的性質(zhì)求出CE和DE,得出AC的長,即可求出四邊形ABCD的面積.試題解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四邊形ABCD是平行四邊形;(2)∵sin∠ACD=,∴∠ACD=60°,∵四邊形ABCD是平行四邊形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等邊三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=CD=1,∴DE=CE=,AC=AE+CE=3,∴S平行四邊形ABCD=2S△ACD=AC?DE=3.19、(1)見解析(2)當(dāng)AF=時,四邊形BCEF是菱形.【解析】
(1)由AB=DE,∠A=∠D,AF=DC,根據(jù)SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四邊形BCEF是平行四邊形.(2)由四邊形BCEF是平行四邊形,可得當(dāng)BE⊥CF時,四邊形BCEF是菱形,所以連接BE,交CF與點(diǎn)G,證得△ABC∽△BGC,由相似三角形的對應(yīng)邊成比例,即可求得AF的值.【詳解】(1)證明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四邊形BCEF是平行四邊形.(2)解:連接BE,交CF與點(diǎn)G,∵四邊形BCEF是平行四邊形,∴當(dāng)BE⊥CF時,四邊形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴AC=.∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.∴,即.∴.∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣.∴當(dāng)AF=時,四邊形BCEF是菱形.20、(1)2﹣;(2)見解析【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根據(jù)直角三角形30°角的性質(zhì)可得AC=2CE=2,再得∠ECD=90°-60°=30°,設(shè)ED=x,則CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的長;(2)如圖2,連接CM,先證明△ACE≌△BCF,則∠BFC=∠AEC=90°,證明C、M、B、F四點(diǎn)共圓,則∠BCM=∠MFB=45°,由等腰三角形三線合一的性質(zhì)可得AM=BM.詳解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt△ACE中,CE=1,∴AC=2CE=2,Rt△CED中,∠ECD=90°﹣60°=30°,∴CD=2ED,設(shè)ED=x,則CD=2x,∴CE=x,∴x=1,x=,∴CD=2x=,∴BD=BC﹣CD=AC﹣CD=2﹣;(2)如圖2,連接CM,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵AC=BC,CE=CF,∴△ACE≌△BCF,∴∠BFC=∠AEC=90°,∵∠CFE=45°,∴∠MFB=45°,∵∠CFM=∠CBA=45°,∴C、M、B、F四點(diǎn)共圓,∴∠BCM=∠MFB=45°,∴∠ACM=∠BCM=45°,∵AC=BC,∴AM=BM.點(diǎn)睛:本題考查了三角形全等的性質(zhì)和判定、等腰直角三角形的性質(zhì)和判定、等腰三角形三線合一的性質(zhì)、直角三角形30°角的性質(zhì)和勾股定理,第二問有難度,構(gòu)建輔助線,證明△ACE≌△BCF是關(guān)鍵.21、(1)見解析;(2)4.1【解析】
試題分析:(1)由正方形的性質(zhì)得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結(jié)論;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中點(diǎn),∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.1,∴DE=AE-AD=4.1.考點(diǎn):1.相似三角形的判定與性質(zhì);2.正方形的性質(zhì).22、(1)詳見解析;(2)【解析】
(1)根據(jù)正方形的性質(zhì)和等腰直角三角形的性質(zhì)以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,利用正方形的性質(zhì)和四邊形周長解答即可.【詳解】(1)證明:∵四邊形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD=AD,DE=CD,∠ADF=∠CDE=45°,∴∠CDF=∠ADE=135°,F(xiàn)D=DE,∴△CDF≌△ADE(SAS);(2)如圖,連接AC.∵四邊形ABCD是正方形,∴∠ACD=∠DAC=45°,∵△CDF≌△ADE,∴∠DCF=∠DAE,∴∠OAC=∠OCA,∴OA=OC,∵∠DCE=45°,∴∠ACE=90°,∴∠OCE=∠OEC,∴OC=OE,∵AF=FD=1,∴AD=AB=BC=,∴AC=2,∴OA+OC=OA+OE=AE=,∴四邊形ABCO的周長AB+BC+OA+OC=.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),難點(diǎn)在于(2)作輔助線構(gòu)造出全等三角形.23、(1)y=-.y=x-1.(1)x<2.【解析】分析:(1)根據(jù)待定系數(shù)法即可求出反比例函數(shù)和一次函數(shù)的表達(dá)式.詳解:(1)∵,點(diǎn)A(5,2),點(diǎn)B(2,3),
∴
又∵點(diǎn)C在y軸負(fù)半軸,點(diǎn)D在第二象限,
∴點(diǎn)C的坐標(biāo)為(2,-1),點(diǎn)D的坐標(biāo)為(-1,3).
∵點(diǎn)在反比例函數(shù)y=的圖象上,
∴
∴反比例函數(shù)的表達(dá)式為
將A(5,2)、B(2,-1)代入y=kx+b,
,解得:∴一次函數(shù)的表達(dá)式為.
(1)將代入,整理得:
∵
∴一次函數(shù)圖象與反比例函數(shù)圖象無交點(diǎn).
觀察圖形,可知:當(dāng)x<2時,反比例函數(shù)圖象在一次函數(shù)圖象上方,
∴不等式>kx+b的解集為x<2.點(diǎn)睛:本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題:求反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 占道半幅施工方案
- 道路工程施工方案
- 楚雄云南楚雄永仁縣縣域醫(yī)共體人民醫(yī)院編外人員招聘10人筆試歷年參考題庫附帶答案詳解
- 揚(yáng)州2025年江蘇揚(yáng)州市江都人民醫(yī)院招聘高層次人才22人筆試歷年參考題庫附帶答案詳解
- 寧波浙江寧波市北侖區(qū)民政事務(wù)中心招聘工作人員筆試歷年參考題庫附帶答案詳解
- 2025年江蘇蘇州市常熟高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)招商公司招聘筆試參考題庫附帶答案詳解
- 2025年內(nèi)蒙古赤峰市巴林右旗萬晟國有資本運(yùn)營集團(tuán)招聘筆試參考題庫附帶答案詳解
- 2025年中國詠菊詩工藝品市場調(diào)查研究報告
- 2025年廣西桂林市民政局所屬事業(yè)單位招聘11人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年廣西柳州融水苗族自治縣文化體育廣電和旅游局招聘編外人員4人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 銀行會計主管年度工作總結(jié)2024(30篇)
- 教師招聘(教育理論基礎(chǔ))考試題庫(含答案)
- 2024年秋季學(xué)期學(xué)校辦公室工作總結(jié)
- 上海市12校2025屆高三第一次模擬考試英語試卷含解析
- 三年級數(shù)學(xué)(上)計算題專項(xiàng)練習(xí)附答案集錦
- 長亭送別完整版本
- 《鐵路軌道維護(hù)》課件-更換道岔尖軌作業(yè)
- 股份代持協(xié)議書簡版wps
- 職業(yè)學(xué)校視頻監(jiān)控存儲系統(tǒng)解決方案
- 《銷售心理學(xué)培訓(xùn)》課件
- 2024年安徽省公務(wù)員錄用考試《行測》真題及解析
評論
0/150
提交評論