河北省石家莊橋西區(qū)2021-2022學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
河北省石家莊橋西區(qū)2021-2022學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
河北省石家莊橋西區(qū)2021-2022學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
河北省石家莊橋西區(qū)2021-2022學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
河北省石家莊橋西區(qū)2021-2022學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省石家莊橋西區(qū)2021-2022學(xué)年十校聯(lián)考最后數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則反比例函數(shù)y=與一次函數(shù)y=bx﹣c在同一坐標(biāo)系內(nèi)的圖象大致是()A. B. C. D.2.如圖是二次函數(shù)y=ax2+bx+c的圖象,對于下列說法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤當(dāng)x>0時,y隨x的增大而減小,其中正確的是()A.①②③ B.①②④ C.②③④ D.③④⑤3.內(nèi)角和為540°的多邊形是()A. B. C. D.4.如圖1,在矩形ABCD中,動點E從A出發(fā),沿AB→BC方向運(yùn)動,當(dāng)點E到達(dá)點C時停止運(yùn)動,過點E做FE⊥AE,交CD于F點,設(shè)點E運(yùn)動路程為x,F(xiàn)C=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,當(dāng)點E在BC上運(yùn)動時,F(xiàn)C的最大長度是,則矩形ABCD的面積是()A. B.5 C.6 D.5.某種超薄氣球表面的厚度約為,這個數(shù)用科學(xué)記數(shù)法表示為()A. B. C. D.6.已知x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣37.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個8.如圖1是某生活小區(qū)的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標(biāo)系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關(guān)系式是()A. B.C. D.9.下列命題正確的是()A.內(nèi)錯角相等B.-1是無理數(shù)C.1的立方根是±1D.兩角及一邊對應(yīng)相等的兩個三角形全等10.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉(zhuǎn)后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是()A.50° B.60° C.70° D.80°11.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶312.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用14.如圖,在直角坐標(biāo)平面xOy中,點A坐標(biāo)為,,,AB與x軸交于點C,那么AC:BC的值為______.15.如果拋物線y=(m﹣1)x2的開口向上,那么m的取值范圍是__.16.如圖,這是由邊長為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個圖形的周長是___.17.如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切線:若⊙O的半徑為2,則圖中陰影部分的面積為_____.18.為響應(yīng)“書香成都”建設(shè)的號召,在全校形成良好的人文閱讀風(fēng)尚,成都市某中學(xué)隨機(jī)調(diào)查了部分學(xué)生平均每天的閱讀時間,統(tǒng)計結(jié)果如圖所示,則在本次調(diào)查中,閱讀時間的中位數(shù)是________小時.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某初級中學(xué)正在展開“文明城市創(chuàng)建人人參與,志愿服務(wù)我當(dāng)先行”的“創(chuàng)文活動”為了了解該校志愿者參與服務(wù)情況,現(xiàn)對該校全體志愿者進(jìn)行隨機(jī)抽樣調(diào)查.根據(jù)調(diào)查數(shù)據(jù)繪制了如下所示不完整統(tǒng)計圖.條形統(tǒng)計圖中七年級、八年級、九年級、教師分別指七年級、八年級、九年級、教師志愿者中被抽到的志愿者,扇形統(tǒng)計圖中的百分?jǐn)?shù)指的是該年級被抽到的志愿者數(shù)與樣本容量的比.請補(bǔ)全條形統(tǒng)計圖;若該校共有志愿者600人,則該校九年級大約有多少志愿者?20.(6分)數(shù)學(xué)活動小組的小穎、小明和小華利用皮尺和自制的兩個直角三角板測量學(xué)校旗桿MN的高度,如示意圖,△ABC和△A′B′C′是他們自制的直角三角板,且△ABC≌△A′B′C′,小穎和小明分別站在旗桿的左右兩側(cè),小穎將△ABC的直角邊AC平行于地面,眼睛通過斜邊AB觀察,一邊觀察一邊走動,使得A、B、M共線,此時,小華測量小穎距離旗桿的距離DN=19米,小明將△A′B′C′的直角邊B′C′平行于地面,眼睛通過斜邊B′A′觀察,一邊觀察一邊走動,使得B′、A′、M共線,此時,小華測量小明距離旗桿的距離EN=5米,經(jīng)測量,小穎和小明的眼睛與地面的距離AD=1米,B′E=1.5米,(他們的眼睛與直角三角板頂點A,B′的距離均忽略不計),且AD、MN、B′E均與地面垂直,請你根據(jù)測量的數(shù)據(jù),計算旗桿MN的高度.21.(6分)如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).請畫出△ABC向左平移5個單位長度后得到的△ABC;請畫出△ABC關(guān)于原點對稱的△ABC;在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).22.(8分)計算:2-1+20160-3tan30°+|-|23.(8分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.24.(10分)問題提出(1)如圖①,在矩形ABCD中,AB=2AD,E為CD的中點,則∠AEB∠ACB(填“>”“<”“=”);問題探究(2)如圖②,在正方形ABCD中,P為CD邊上的一個動點,當(dāng)點P位于何處時,∠APB最大?并說明理由;問題解決(3)如圖③,在一幢大樓AD上裝有一塊矩形廣告牌,其側(cè)面上、下邊沿相距6米(即AB=6米),下邊沿到地面的距離BD=11.6米.如果小剛的睛睛距離地面的高度EF為1.6米,他從遠(yuǎn)處正對廣告牌走近時,在P處看廣告效果最好(視角最大),請你在圖③中找到點P的位置,并計算此時小剛與大樓AD之間的距離.25.(10分)如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.若∠ABC=70°,則∠NMA的度數(shù)是度.若AB=8cm,△MBC的周長是14cm.①求BC的長度;②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.26.(12分)計算:.27.(12分)如圖是一副撲克牌中的三張牌,將它們正面向下洗均勻,甲同學(xué)從中隨機(jī)抽取一張牌后放回,乙同學(xué)再從中隨機(jī)抽取一張牌,用樹狀圖(或列表)的方法,求抽出的兩張牌中,牌面上的數(shù)字都是偶數(shù)的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)二次函數(shù)的圖象找出a、b、c的正負(fù),再結(jié)合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關(guān)系即可得出結(jié)論.【詳解】解:觀察二次函數(shù)圖象可知:開口向上,a>1;對稱軸大于1,>1,b<1;二次函數(shù)圖象與y軸交點在y軸的正半軸,c>1.∵反比例函數(shù)中k=﹣a<1,∴反比例函數(shù)圖象在第二、四象限內(nèi);∵一次函數(shù)y=bx﹣c中,b<1,﹣c<1,∴一次函數(shù)圖象經(jīng)過第二、三、四象限.故選C.【點睛】本題考查了二次函數(shù)的圖象、反比例函數(shù)的圖象以及一次函數(shù)的圖象,解題的關(guān)鍵是根據(jù)二次函數(shù)的圖象找出a、b、c的正負(fù).本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)二次函數(shù)圖象找出a、b、c的正負(fù),再結(jié)合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關(guān)系即可得出結(jié)論.2、C【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】解:①由圖象可知:a>0,c<0,∴ac<0,故①錯誤;②由于對稱軸可知:<1,∴2a+b>0,故②正確;③由于拋物線與x軸有兩個交點,∴△=b2﹣4ac>0,故③正確;④由圖象可知:x=1時,y=a+b+c<0,故④正確;⑤當(dāng)x>時,y隨著x的增大而增大,故⑤錯誤;故選:C.【點睛】本題考查二次函數(shù),解題的關(guān)鍵是熟練運(yùn)用二次函數(shù)的圖象與性質(zhì),本題屬于基礎(chǔ)題型.3、C【解析】試題分析:設(shè)它是n邊形,根據(jù)題意得,(n﹣2)?180°=140°,解得n=1.故選C.考點:多邊形內(nèi)角與外角.4、B【解析】

易證△CFE∽△BEA,可得,根據(jù)二次函數(shù)圖象對稱性可得E在BC中點時,CF有最大值,列出方程式即可解題.【詳解】若點E在BC上時,如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數(shù)圖象對稱性可得E在BC中點時,CF有最大值,此時,BE=CE=x﹣,即,∴,當(dāng)y=時,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.【點睛】本題考查了二次函數(shù)頂點問題,考查了相似三角形的判定和性質(zhì),考查了矩形面積的計算,本題中由圖象得出E為BC中點是解題的關(guān)鍵.5、A【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】,故選:A.【點睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.6、A【解析】

根據(jù)一元二次方程根與系數(shù)的關(guān)系和整體代入思想即可得解.【詳解】∵x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點睛】本題主要考查一元二次方程的根與系數(shù)的關(guān)系(韋達(dá)定理),韋達(dá)定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,那么x1+x2=-ba,x1x2=7、B【解析】解:第一個圖是軸對稱圖形,又是中心對稱圖形;第二個圖是軸對稱圖形,不是中心對稱圖形;第三個圖是軸對稱圖形,又是中心對稱圖形;第四個圖是軸對稱圖形,不是中心對稱圖形;既是軸對稱圖形,又是中心對稱圖形的有2個.故選B.8、D【解析】

根據(jù)圖象可設(shè)二次函數(shù)的頂點式,再將點(0,0)代入即可.【詳解】解:根據(jù)圖象,設(shè)函數(shù)解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據(jù)實際拋物線形,求函數(shù)解析式,解題的關(guān)鍵是正確設(shè)出函數(shù)解析式.9、D【解析】解:A.兩直線平行,內(nèi)錯角相等,故A錯誤;B.-1是有理數(shù),故B錯誤;C.1的立方根是1,故C錯誤;D.兩角及一邊對應(yīng)相等的兩個三角形全等,正確.故選D.10、B【解析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉(zhuǎn)的性質(zhì)可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉(zhuǎn)的性質(zhì).11、A【解析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點晴:本題主要通過證出兩個三角形是相似三角形,再利用相似三角形的性質(zhì):相似三角形的面積之比等于對應(yīng)邊之比的平方,進(jìn)而將求面積比的問題轉(zhuǎn)化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關(guān)系(銳角三角形函數(shù))即可得出對應(yīng)邊之比,進(jìn)而得到面積比.12、C【解析】

過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質(zhì)可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設(shè)⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

根據(jù)向量的三角形法則表示出CB,再根據(jù)BC、AD的關(guān)系解答.【詳解】如圖,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案為12a-【點睛】本題考查了平面向量,梯形,向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵.14、【解析】

過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.先證△ADO∽△OEB,再根據(jù)∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根據(jù)平行線分線段成比例得到AC:BC=OD:OE=2∶=【詳解】解:如圖所示:過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵點A坐標(biāo)為(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根據(jù)平行線分線段成比例得:AC:BC=OD:OE=2∶=故答案為.【點睛】本題考查三角形相似的證明以及平行線分線段成比例.15、m>2【解析】試題分析:根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)拋物線開口向上時,二次項系數(shù)m﹣2>2.解:因為拋物線y=(m﹣2)x2的開口向上,所以m﹣2>2,即m>2,故m的取值范圍是m>2.考點:二次函數(shù)的性質(zhì).16、2n+1【解析】觀察擺放的一系列圖形,可得到依次的周長分別是3,4,5,6,7,…,從中得到規(guī)律,根據(jù)規(guī)律寫出第n個圖形的周長.解:由已知一系列圖形觀察圖形依次的周長分別是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n個圖形的周長為:2+n.故答案為2+n.此題考查的是圖形數(shù)字的變化類問題,關(guān)鍵是通過觀察分析得出規(guī)律,根據(jù)規(guī)律求解.17、【解析】試題分析:連接OC,求出∠D和∠COD,求出邊DC長,分別求出三角形OCD的面積和扇形COB的面積,即可求出答案.連接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴陰影部分的面積是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案為2﹣π.考點:1.等腰三角形性質(zhì);2.三角形的內(nèi)角和定理;3.切線的性質(zhì);4.扇形的面積.18、1【解析】由統(tǒng)計圖可知共有:8+19+10+3=40人,中位數(shù)應(yīng)為第20與第21個的平均數(shù),而第20個數(shù)和第21個數(shù)都是1(小時),則中位數(shù)是1小時.故答案為1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;(2)1.【解析】試題分析:(1)根據(jù)百分比=計算即可解決問題,求出八年級、九年級、被抽到的志愿者人數(shù)畫出條形圖即可;(2)用樣本估計總體的思想,即可解決問題;試題解析:解:(1)由題意總?cè)藬?shù)=20÷40%=50人,八年級被抽到的志愿者:50×30%=15人九年級被抽到的志愿者:50×20%=10人,條形圖如圖所示:(2)該校共有志愿者600人,則該校九年級大約有600×20%=1人.答:該校九年級大約有1名志愿者.20、11米【解析】

過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】解:過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴AEMF∴19MF∴MF=192∵NF=B'E=1.5,MN=MF+NF,∴MN=MF+B'E=19答:旗桿MN的高度約為11米.【點睛】本題考查了相似三角形的應(yīng)用,正確的作出輔助線是解題的關(guān)鍵.21、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標(biāo)為:(2,0)【解析】

(1)按題目的要求平移就可以了關(guān)于原點對稱的點的坐標(biāo)變化是:橫、縱坐標(biāo)都變?yōu)橄喾磾?shù),找到對應(yīng)點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉(zhuǎn)為了已知直線與直線一側(cè)的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關(guān)于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標(biāo)為:(2,0)【點睛】1、圖形的平移;2、中心對稱;3、軸對稱的應(yīng)用22、【解析】

原式第一項利用負(fù)指數(shù)冪法則計算,第二項利用零指數(shù)冪法則計算,第三項利用特殊角的三角函數(shù)值化簡,最后一項利用絕對值的代數(shù)意義化簡,即可得到結(jié)果;【詳解】原式===.【點睛】此題考查實數(shù)的混合運(yùn)算.此題難度不大,注意解決此類題目的關(guān)鍵是熟練掌握負(fù)整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)值、絕對值等考點的運(yùn)算.23、(1)證明見解析;(2)BC=,AD=.【解析】分析:(1)連接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,據(jù)此得∠OEB=∠CBE,從而得出OE∥BC,進(jìn)一步即可得證;(2)證△BDE∽△BEC得,據(jù)此可求得BC的長度,再證△AOE∽△ABC得,據(jù)此可得AD的長.詳解:(1)如圖,連接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC為⊙O的切線;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴,即,∴BC=;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴,即,解得:AD=.點睛:本題主要考查切線的判定與性質(zhì),解題的關(guān)鍵是掌握切線的判定與性質(zhì)及相似三角形的判定與性質(zhì).24、(1)>;(2)當(dāng)點P位于CD的中點時,∠APB最大,理由見解析;(3)4米.【解析】

(1)過點E作EF⊥AB于點F,由矩形的性質(zhì)和等腰三角形的判定得到:△AEF是等腰直角三角形,易證∠AEB=90°,而∠ACB<90°,由此可以比較∠AEB與∠ACB的大?。?)假設(shè)P為CD的中點,作△APB的外接圓⊙O,則此時CD切⊙O于P,在CD上取任意異于P點的點E,連接AE,與⊙O交于點F,連接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB與∠APB均為⊙O中弧AB所對的角,則∠AFB=∠APB,即可判斷∠APB與∠AEB的大小關(guān)系,即可得點P位于何處時,∠APB最大;(3)過點E作CE∥DF,交AD于點C,作AB的垂直平分線,垂足為點Q,并在垂直平分線上取點O,使OA=CQ,以點O為圓心,OB為半徑作圓,則⊙O切CE于點G,連接OG,并延長交DF于點P,連接OA,再利用勾股定理以及長度關(guān)系即可得解.【詳解】解:(1)∠AEB>∠ACB,理由如下:如圖1,過點E作EF⊥AB于點F,∵在矩形ABCD中,AB=2AD,E為CD中點,∴四邊形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案為:>;(2)當(dāng)點P位于CD的中點時,∠APB最大,理由如下:假設(shè)P為CD的中點,如圖2,作△APB的外接圓⊙O,則此時CD切⊙O于點P,在CD上取任意異于P點的點E,連接AE,與⊙O交于點F,連接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故點P位于CD的中點時,∠APB最大:(3)如圖3,過點E作CE∥DF交AD于點C,作線段AB的垂直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論