北京市延慶區(qū)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第1頁
北京市延慶區(qū)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第2頁
北京市延慶區(qū)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第3頁
北京市延慶區(qū)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第4頁
北京市延慶區(qū)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

北京市延慶區(qū)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等比數(shù)列中,則()A.81 B. C. D.2432.在中,已知角的對邊分別為,若,,,,且,則的最小角的余弦值為()A. B. C. D.3.函數(shù)在區(qū)間(,)內(nèi)的圖象是()A. B. C. D.4.若直線上存在點滿足則實數(shù)的最大值為A. B. C. D.5.以下有四個說法:①若、為互斥事件,則;②在中,,則;③和的最大公約數(shù)是;④周長為的扇形,其面積的最大值為;其中說法正確的個數(shù)是()A. B.C. D.6.已知等差數(shù)列前n項的和為,,,則()A.25 B.26 C.27 D.287.一組數(shù)據(jù)0,1,2,3,4的方差是A. B. C.2 D.48.一個幾何體的三視圖分別是一個正方形,一個矩形,一個半圓,尺寸大小如圖所示,則該幾何體的體積是()A. B. C. D.9.直線的傾斜角的大小為()A. B. C. D.10.已知曲線,如何變換可得到曲線()A.把上各點的橫坐標(biāo)伸長到原來的倍,再向右平移個單位長度B.把上各點的橫坐標(biāo)伸長到原來的倍,再向左平移個單位長度C.把上各點的橫坐標(biāo)縮短到原來的倍,再向右平移個單位長度D.把上各點的橫坐標(biāo)縮短到原來的倍,再向左平移個單位長度二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,若,則__________.12.若,且,則的最小值是______.13.兩圓,相切,則實數(shù)=______.14.已知,那么__________.15.已知,均為單位向量,它們的夾角為,那么__________.16.已知等比數(shù)列{an}的前n項和為Sn,若S3=7,S6=63,則an=_____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知(Ⅰ)求的值;(Ⅱ)若,求的值.18.已知菱形ABCD的邊長為2,M為BD上靠近D的三等分點,且線段.(1)求的值;(2)點P為對角線BD上的任意一點,求的最小值.19.如圖,在邊長為2菱形ABCD中,,且對角線AC與BD交點為O.沿BD將折起,使點A到達點的位置.(1)若,求證:平面ABCD;(2)若,求三棱錐體積.20.已知數(shù)列為等差數(shù)列,且.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.已知函數(shù).(1)求的最小正周期;(2)求在區(qū)間上的最大值和最小值,并分別寫出相應(yīng)的的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】解:因為等比數(shù)列中,則,選A2、D【解析】

利用余弦定理求出和的表達式,由,結(jié)合正弦定理得出的表達式,利用余弦定理得出的表達式,可解出的值,于此確定三邊長,再利用大邊對大角定理得出為最小角,從而求出.【詳解】,由正弦定理,即,,,,解得,由大邊對大角定理可知角是最小角,所以,,故選D.【點睛】本題考查正弦定理和余弦定理的應(yīng)用,考查大邊對大角定理,在解題時,要充分結(jié)合題中的已知條件選擇正弦定理和余弦定理進行求解,考查計算能力,屬于中等題.3、D【解析】解:函數(shù)y=tanx+sinx-|tanx-sinx|=分段畫出函數(shù)圖象如D圖示,故選D.4、B【解析】

首先畫出可行域,然后結(jié)合交點坐標(biāo)平移直線即可確定實數(shù)m的最大值.【詳解】不等式組表示的平面區(qū)域如下圖所示,由,得:,即C點坐標(biāo)為(-1,-2),平移直線x=m,移到C點或C點的左邊時,直線上存在點在平面區(qū)域內(nèi),所以,m≤-1,即實數(shù)的最大值為-1.【點睛】本題主要考查線性規(guī)劃及其應(yīng)用,屬于中等題.5、C【解析】

設(shè)、為對立事件可得出命題①的正誤;利用大邊對大角定理和余弦函數(shù)在上的單調(diào)性可判斷出命題②的正誤;列出和各自的約數(shù),可找出兩個數(shù)的最大公約數(shù),從而可判斷出命題③的正誤;設(shè)扇形的半徑為,再利用基本不等式可得出扇形面積的最大值,從而判斷出命題④的正誤.【詳解】對于命題①,若、為對立事件,則、互斥,則,命題①錯誤;對于命題②,由大邊對大角定理知,,且,函數(shù)在上單調(diào)遞減,所以,,命題②正確;對于命題③,的約數(shù)有、、、、、,的約數(shù)有、、、、、、、,則和的最大公約數(shù)是,命題③正確;對于命題④,設(shè)扇形的半徑為,則扇形的弧長為,扇形的面積為,由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,所以,扇形面積的最大值為,命題④錯誤.故選C.【點睛】本題考查命題真假的判斷,涉及互斥事件的概率、三角形邊角關(guān)系、公約數(shù)以及扇形面積的最值,判斷時要結(jié)合這些知識點的基本概念來理解,考查推理能力,屬于中等題.6、C【解析】

根據(jù)等差數(shù)列的求和與通項性質(zhì)求解即可.【詳解】等差數(shù)列前n項的和為,故.故.故選:C【點睛】本題主要考查了等差數(shù)列通項與求和的性質(zhì)運用,屬于基礎(chǔ)題.7、C【解析】

先求得平均數(shù),再根據(jù)方差公式計算?!驹斀狻繑?shù)據(jù)的平均數(shù)為:方差是=2,選C?!军c睛】方差公式,代入計算即可。8、C【解析】

由給定的幾何體的三視圖得到該幾何體表示一個底面半徑為1,母線長為2的半圓柱,結(jié)合圓柱的體積公式,即可求解.【詳解】由題意,根據(jù)給定的幾何體的三視圖可得:該幾何體表示一個底面半徑為1,母線長為2的半圓柱,所以該半圓柱的體積為.故選:C.【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.9、B【解析】

由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選.10、D【解析】

用誘導(dǎo)公式把兩個函數(shù)名稱化為相同,然后再按三角函數(shù)圖象變換的概念判斷.【詳解】,∴可把的圖象上各點的橫坐標(biāo)縮短到原來的倍,再向左平移個單位長度或先向左平移個單位,再把圖象上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變)可得的圖象,故選:D.【點睛】本題考查三角函數(shù)的圖象變換,解題時首先需要函數(shù)的前后名稱相同,其次平移變換與周期變換的順序不同時,平移的單位有區(qū)別.向左平移個單位所得圖象的函數(shù)式為,而不是.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】由,得.即.解得.12、8【解析】

利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.13、0,±2【解析】

根據(jù)題意,由圓的標(biāo)準(zhǔn)方程分析兩圓的圓心與半徑,分兩圓外切與內(nèi)切兩種情況討論,求出a的值,綜合即可得答案.【詳解】根據(jù)題意:圓的圓心為(0,0),半徑為1,圓的圓心為(﹣4,a),半徑為5,若兩圓相切,分2種情況討論:當(dāng)兩圓外切時,有(﹣4)2+a2=(1+5)2,解可得a=±2,當(dāng)兩圓內(nèi)切時,有(﹣4)2+a2=(1﹣5)2,解可得a=0,綜合可得:實數(shù)a的值為0或±2;故答案為0或±2.【點睛】本題考查圓與圓的位置關(guān)系,關(guān)鍵是掌握圓與圓的位置關(guān)系的判定方法.14、2017【解析】,故,由此得.【點睛】本題主要考查函數(shù)解析式的求解方法,考查等比數(shù)列前項和的計算公式.對于函數(shù)解析式的求法,有兩種,一種是換元法,另一種的變換法.解析中運用的方法就是變換法,即將變換為含有的式子.也可以令.等比數(shù)列求和公式為.15、.【解析】分析:由,均為單位向量,它們的夾角為,求出數(shù)量積,先將平方,再開平方即可的結(jié)果.詳解:∵,故答案為.點睛:平面向量數(shù)量積公式有兩種形式,一是,二是,主要應(yīng)用以下幾個方面:(1)求向量的夾角,(此時往往用坐標(biāo)形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).16、【解析】

利用等比數(shù)列的前n項和公式列出方程組,求出首項與公比,由此能求出該數(shù)列的通項公式.【詳解】由題意,,不合題意舍去;當(dāng)?shù)缺葦?shù)列的前n項和為,即,解得,所以,故答案為:.【點睛】本題主要考查了等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用兩角和與差的正弦公式將已知兩式展開,分別作和、作差可得,,再利用,即可求出結(jié)果;(Ⅱ)由已知求得,再由,利用兩角差的余弦公式展開求解,即可求出結(jié)果.【詳解】解:(I)①②由①+②得③由①-②得④由③÷④得(II)∵,,【點睛】本題主要考查了兩角和差的正余弦公式在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.18、(1),(2)【解析】

(1)由結(jié)合,可求出,從而得到(2)建立直角坐標(biāo)系,設(shè),可得到,然后利用二次函數(shù)的知識求出最小值【詳解】(1)如圖,四邊形ABCD為菱形,所以所以因為,所以可解得,所以所以是等邊三角形,故(2)以A為原點,所在直線為x軸建立如圖所示坐標(biāo)系:則有,所以線段:設(shè),則有,所以因為,所以當(dāng)時取得最小值【點睛】本題考查平面向量數(shù)量積及其運算,涉及余弦定理,二次函數(shù)等基本知識,屬于中檔題.19、(1)見解析(2)【解析】

(1)證明與即可.(2)法一:證明平面,再過點做垂足為,證明為三棱錐的高再求解即可.法二:通過進行轉(zhuǎn)化求解即可.法三:通過進行轉(zhuǎn)化求解即可.【詳解】證明:(1)∵在菱形ABCD中,,,AC與BD交于點O.以BD為折痕,將折起,使點A到達點的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中點,則且,因為且,,所以平面,過點做垂足為,則平面BCD,又∴,解得,∴三棱錐體積.(法二):因為,,取AC中點E,,,,又(法三)因為且,,所以平面,,所以.【點睛】本題主要考查了線面垂直的證明與錐體體積的求解方法等.需要根據(jù)題意找到合適的底面與高,或者利用割補法求解體積.屬于中檔題.20、(1);(2).【解析】試題分析:(1)由于為等差數(shù)列,根據(jù)已知條件求出的第一項和第三項求得數(shù)列的公差,即得數(shù)列的通項公式,移項可得數(shù)列的通項公式;(2)由(1)可知,通過分組求和根據(jù)等差數(shù)列和等比數(shù)列的前項和公式求得的前項和.試題解析:(1)設(shè)數(shù)列的公差為,∵,∴,∴,∴.(2)考點:等差數(shù)列的通項公式及數(shù)列求和.21、(1)(2)見解析【解析】試題分析:(1)利用和角公式及降次公式對f(x)進

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論