江西省宜黃市一中2024屆高一下數(shù)學期末統(tǒng)考試題含解析_第1頁
江西省宜黃市一中2024屆高一下數(shù)學期末統(tǒng)考試題含解析_第2頁
江西省宜黃市一中2024屆高一下數(shù)學期末統(tǒng)考試題含解析_第3頁
江西省宜黃市一中2024屆高一下數(shù)學期末統(tǒng)考試題含解析_第4頁
江西省宜黃市一中2024屆高一下數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江西省宜黃市一中2024屆高一下數(shù)學期末統(tǒng)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.各棱長均為的三棱錐的表面積為()A. B. C. D.2.已知函數(shù),若存在實數(shù),滿足,則實數(shù)的取值范圍為(

)A. B.C. D.3.若集合,則集合()A. B. C. D.4.已知分別為的三邊長,且,則=()A. B. C. D.35.在等差數(shù)列中,若,,則()A. B.0 C.1 D.66.直線的傾斜角為()A. B. C. D.7.已知向量,,則()A.-1 B.-2 C.1 D.08.數(shù)列的通項公式為,則數(shù)列的前100項和().A. B. C. D.9.在中,內(nèi)角,,的對邊分別為,,,且=.則A. B. C. D.10.的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在賽季季后賽中,當一個球隊進行完場比賽被淘汰后,某個籃球愛好者對該隊的7場比賽得分情況進行統(tǒng)計,如表:場次得分104為了對這個隊的情況進行分析,此人設計計算的算法流程圖如圖所示(其中是這場比賽的平均得分),輸出的的值______.12.已知函數(shù),該函數(shù)零點的個數(shù)為_____________13.已知,那么__________.14.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.15.設函數(shù)的最小值為,則的取值范圍是___________.16.在中,,,點為延長線上一點,,連接,則=______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知.(1)若對任意的,不等式上恒成立,求實數(shù)的取值范圍;(2)解關于的不等式.18.不等式的解集為______.19.如圖,在平面四邊形中,.(Ⅰ)求;(Ⅱ)若,求.20.已知公差不為零的等差數(shù)列的前項和為,,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,求.21.同時拋擲兩枚骰子,并記下二者向上的點數(shù),求:二者點數(shù)相同的概率;兩數(shù)之積為奇數(shù)的概率;二者的數(shù)字之和不超過5的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

判斷三棱錐是正四面體,它的表面積就是四個三角形的面積,求出一個三角形的面積即可求解本題.【詳解】由題意可知三棱錐是正四面體,各個三角形的邊長為a,三棱錐的表面積就是四個全等三角形的面積,即,

所以C選項是正確的.【點睛】本題考查棱錐的表面積,考查空間想象能力,計算能力,是基礎題.2、A【解析】

根據(jù)題意可知方程有解即可,代入解析式化簡后,利用基本不等式得出,再利用分類討論思想即可求出實數(shù)的取值范圍.【詳解】由題意知,方程有解,則,化簡得,即,因為,所以,當時,化簡得,解得;當時,化簡得,解得,綜上所述的取值范圍為.故答案為:A【點睛】本題主要考查了函數(shù)的基本性質(zhì)的應用,以及利用基本不等式求最值的應用,其中解答中利用題設條件化簡,合理利用基本不等式求解是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.3、D【解析】試題分析:作數(shù)軸觀察易得.考點:集合的基本運算.4、B【解析】

由已知直接利用正弦定理求解.【詳解】在中,由A=45°,C=60°,c=3,由正弦定理得.故選B.【點睛】本題考查三角形的解法,考查正弦定理的應用,屬于基礎題.5、C【解析】

根據(jù)等差數(shù)列性質(zhì)得到答案.【詳解】等差數(shù)列中,若,【點睛】本題考查了等差數(shù)列的性質(zhì),屬于簡單題.6、D【解析】

求出斜率,根據(jù)斜率與傾斜角關系,即可求解.【詳解】化為,直線的斜率為,傾斜角為.故選:D.【點睛】本題考查直線方程一般式化為斜截式,求直線的斜率、傾斜角,屬于基礎題.7、C【解析】

根據(jù)向量數(shù)量積的坐標運算,得到答案.【詳解】向量,,所以.故選:C.【點睛】本題考查向量數(shù)量積的坐標運算,屬于簡單題.8、C【解析】

根據(jù)通項公式,結合裂項求和法即可求得.【詳解】數(shù)列的通項公式為,則故選:C.【點睛】本題考查了裂項求和的應用,屬于基礎題.9、C【解析】試題分析:由正弦定理得,,由于,,,故答案為C.考點:正弦定理的應用.10、C【解析】試題分析:.考點:誘導公式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)題意,模擬程序框圖的運行過程,得出該程序運行的是求數(shù)據(jù)的標準差,即可求得答案.【詳解】模擬程序框圖的運行過程知,該程序運行的結果是求這個數(shù)據(jù)的標準差這組數(shù)據(jù)的平均數(shù)是方差是:標準差是故答案為:.【點睛】本題主要考查了根據(jù)程序框圖求輸出結果,解題關鍵是掌握程序框圖基礎知識和計算數(shù)據(jù)方差的解法,考查了分析能力和計算能力,屬于中檔題.12、3【解析】

令,可得或;當時,可解得為函數(shù)一個零點;當時,可知,根據(jù)的范圍可求得零點;綜合兩種情況可得零點總個數(shù).【詳解】令,可得:或當時,或(舍)為函數(shù)的一個零點當時,,,為函數(shù)的零點綜上所述,該函數(shù)的零點個數(shù)為:個本題正確結果:【點睛】本題考查函數(shù)零點個數(shù)的求解,關鍵是能夠?qū)栴}轉(zhuǎn)化為方程根的個數(shù)的求解,涉及到余弦函數(shù)零點的求解.13、2017【解析】,故,由此得.【點睛】本題主要考查函數(shù)解析式的求解方法,考查等比數(shù)列前項和的計算公式.對于函數(shù)解析式的求法,有兩種,一種是換元法,另一種的變換法.解析中運用的方法就是變換法,即將變換為含有的式子.也可以令.等比數(shù)列求和公式為.14、【解析】

根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【詳解】因為,所以,即;取連續(xù)的有限項構成數(shù)列,不妨令,則,且,則此時必為整數(shù);當時,,不符合;當時,,符合,此時公比;當時,,不符合;當時,,不符合;故:公比.【點睛】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時,經(jīng)常需要進行分類,可先通過列舉的方式找到思路,然后再準確分析.15、.【解析】

確定函數(shù)的單調(diào)性,由單調(diào)性確定最小值.【詳解】由題意在上是增函數(shù),在上是減函數(shù),又,∴,,故答案為.【點睛】本題考查分段函數(shù)的單調(diào)性.由單調(diào)性確定最小值,16、.【解析】

由題意,畫出幾何圖形.由三線合一可求得,根據(jù)補角關系可求得.再結合余弦定理即可求得.【詳解】在中,,作,如下圖所示:由三線合一可知為中點則所以點為延長線上一點,則在中由余弦定理可得所以故答案為:【點睛】本題考查了等腰三角形性質(zhì),余弦定理在解三角形中的應用,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)參變分離后可得在上恒成立,利用基本不等式可求的最小值,從而得到參數(shù)的取值范圍.(2)原不等式可化為,就對應方程的兩根的大小關系分類討論可得不等式的解集.【詳解】(1)對任意的,恒成立即恒成立.因為當時,(當且僅當時等號成立),所以即.(2)不等式,即,①當即時,;②當即時,;③當即時,.綜上:當時,不等式解集為;當時,不等式解集為;當時,不等式解集為.【點睛】含參數(shù)的一元二次不等式,其一般的解法是:先考慮對應的二次函數(shù)的開口方向,再考慮其判別式的符號,其次在判別式大于零的條件下比較兩根的大小,最后根據(jù)不等號的方向和開口方向得到不等式的解.一元二次不等式的恒成立問題,參變分離后可以轉(zhuǎn)化為函數(shù)的最值進行討論,后者可利用基本不等式來求.18、【解析】

根據(jù)一元二次不等式的解法直接求解即可.【詳解】因為方程的根為:,,所以不等式的解集為.故答案為:.【點睛】本題考查一元二次不等式的解法,考查對基礎知識和基本技能的掌握,屬于基礎題.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)在中利用余弦定理即可求得結果;(Ⅱ)在中利用正弦定理構造方程即可求得結果.【詳解】(Ⅰ)在中,由余弦定理可得:(Ⅱ),在中,由正弦定理可得:,即:解得:【點睛】本題考查利用正弦定理、余弦定理解三角形的問題,考查公式的簡單應用,屬于基礎題.20、(1);(2).【解析】試題分析:(1)利用等差等比基本公式,計算數(shù)列的通項公式;(2)利用裂項相消法求和.試題解析:(1)設公差為,因為,,成等數(shù)列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.21、(1)(2)(3)【解析】

把兩個骰子分別記為紅色和黑色,則問題中含有基本事件個數(shù),記事件A表示“二者點數(shù)相同”,利用列舉法求出事件A中包含6個基本事件,由此能求出二者點數(shù)相同的概率.記事件B表示“兩數(shù)之積為奇數(shù)”,利用列舉法求出事件B中含有9個基本事件,由此能求出兩數(shù)之積為奇數(shù)的概率.記事件C表示“二者的數(shù)字之和不超過5”,利用列舉法求出事件C中包含的基本事件有10個,由此能求出二者的數(shù)字之和不超過5的概率.【詳解】解:把兩個骰子分別記為紅色和黑色,則問題中含有基本事件個數(shù),記事件A表示“二者點數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論