版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題1.1空間向量及其運(yùn)算知識(shí)點(diǎn)1空間向量的有關(guān)概念1.空間向量的定義及表示定義在空間,把具有方向和大小的量叫做空間向量長(zhǎng)度或??臻g向量的大小叫做空間向量的長(zhǎng)度或模表示方法幾何表示法空間向量用有向線段表示,有向線段的長(zhǎng)度表示空間向量的模符號(hào)表示法若向量SKIPIF1<0的起點(diǎn)是A,終點(diǎn)是B,則SKIPIF1<0也可記作SKIPIF1<0,其模記為SKIPIF1<0或SKIPIF1<02.幾類特殊的空間向量名稱方向模表示法零向量任意0記為SKIPIF1<0單位向量1SKIPIF1<0或SKIPIF1<0相反向量相反相等記為SKIPIF1<0共線向量相同或相反SKIPIF1<0或SKIPIF1<0相等向量相同相等SKIPIF1<0或SKIPIF1<0知識(shí)點(diǎn)2空間向量的線性運(yùn)算1.空間向量的加減運(yùn)算加法運(yùn)算三角形法則語(yǔ)言敘述首尾順次相接,首指向尾為和圖形敘述平行四邊形法則語(yǔ)言敘述共起點(diǎn)的兩邊為鄰邊作平行四邊形,共起點(diǎn)對(duì)角線為和圖形敘述減法運(yùn)算三角形法則語(yǔ)言敘述共起點(diǎn),連終點(diǎn),方向指向被減向量圖形敘述2.空間向量的數(shù)乘運(yùn)算定義與平面向量一樣,實(shí)數(shù)λ與空間向量SKIPIF1<0的乘積SKIPIF1<0仍然是一個(gè)向量,稱為空間向量的數(shù)乘幾何意義SKIPIF1<0SKIPIF1<0與向量SKIPIF1<0的方向相同SKIPIF1<0的長(zhǎng)度是SKIPIF1<0的長(zhǎng)度的SKIPIF1<0倍SKIPIF1<0SKIPIF1<0與向量SKIPIF1<0的方向相反SKIPIF1<0SKIPIF1<0,其方向是任意的3.空間向量的運(yùn)算律交換律SKIPIF1<0結(jié)合律SKIPIF1<0,SKIPIF1<0分配律SKIPIF1<0知識(shí)點(diǎn)3共線向量與共面向量1.直線SKIPIF1<0的方向向量定義:把與SKIPIF1<0平行的非零向量稱為直線SKIPIF1<0的方向向量.2.共線向量與共面向量的區(qū)別共線(平行)向量共面向量定義位置關(guān)系表示若干空間向量的有向線段所在的直線互相平行或重合,這些向量叫做共線向量或平行向量平行于同一個(gè)平面的向量叫做共面向量特征方向相同或相反特例零向量與任意向量平行充要條件共線向量定理:對(duì)于空間任意兩個(gè)向量SKIPIF1<0SKIPIF1<0,SKIPIF1<0的充要條件是存在實(shí)數(shù)SKIPIF1<0使SKIPIF1<0共面向量定理:若兩個(gè)向量SKIPIF1<0不共線,則向量SKIPIF1<0與向量SKIPIF1<0共面的充要條件是存在唯一的有序?qū)崝?shù)對(duì)(x,y),使SKIPIF1<0對(duì)空間任一點(diǎn)O,SKIPIF1<0空間中SKIPIF1<0四點(diǎn)共面的充要條件是存在有序?qū)崝?shù)對(duì)SKIPIF1<0,使得對(duì)空間中任意一點(diǎn)SKIPIF1<0,都有SKIPIF1<0重難點(diǎn)1空間向量的線性運(yùn)算1.如圖,在空間四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),化簡(jiǎn)下列各式:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)由于SKIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,再根據(jù)空間向量的加法運(yùn)算即可求出結(jié)果;(2)由于SKIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,再根據(jù)空間向量的減法運(yùn)算即可求出結(jié)果;(3)由于SKIPIF1<0,SKIPIF1<0分別SKIPIF1<0,SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,又SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0,再根據(jù)空間向量的加法運(yùn)算即可求出結(jié)果;(1)解:因?yàn)镾KIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以,SKIPIF1<0;(2)解:因?yàn)镾KIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以,SKIPIF1<0;(3)解:因?yàn)镾KIPIF1<0,SKIPIF1<0分別SKIPIF1<0,SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,又SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0,所以,SKIPIF1<0.2.如圖,點(diǎn)M,N分別是四面體ABCD的棱AB和CD的中點(diǎn),求證:SKIPIF1<0.【答案】詳見解析.【分析】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0即可求證.【詳解】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0.3.在正六棱柱SKIPIF1<0中,化簡(jiǎn)SKIPIF1<0,并在圖中標(biāo)出化簡(jiǎn)結(jié)果.
【答案】SKIPIF1<0,作圖見解析【分析】先利用正六棱柱的性質(zhì)證得SKIPIF1<0,從而利用空間向量的線性運(yùn)算即可得解.【詳解】因?yàn)榱呅蜸KIPIF1<0是正六邊形,所以SKIPIF1<0,SKIPIF1<0,又在正六棱柱SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0是平行四邊形,則SKIPIF1<0,所以SKIPIF1<0,向量SKIPIF1<0在圖中標(biāo)記如下,
4.如圖.空間四邊形OABC中,SKIPIF1<0,點(diǎn)M在OA上,且滿足SKIPIF1<0,點(diǎn)N為BC的中點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)空間向量的加減和數(shù)乘運(yùn)算直接求解即可.【詳解】SKIPIF1<0.故選:D.5.如圖所示,在長(zhǎng)方體ABCD一A1B1C1D1中,SKIPIF1<0,E,F(xiàn),G,H,P,Q分別是AB,BC,CC1,C1D1,D1A1,A1A的中點(diǎn),求證:SKIPIF1<0.
【答案】證明見解析.【分析】先利用基底SKIPIF1<0表示出SKIPIF1<0,進(jìn)而證得SKIPIF1<0成立.【詳解】SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.6.如圖,設(shè)A是SKIPIF1<0所在平面外的一點(diǎn),G是SKIPIF1<0的重心.求證:SKIPIF1<0.【答案】證明見解析.【分析】連接SKIPIF1<0,延長(zhǎng)后交SKIPIF1<0于點(diǎn)E,利用G是SKIPIF1<0的重心即可得到SKIPIF1<0與SKIPIF1<0之間的關(guān)系.【詳解】連接SKIPIF1<0,延長(zhǎng)后交SKIPIF1<0于點(diǎn)E,連接SKIPIF1<0,由G為SKIPIF1<0的重心,可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0.7.如圖,在平行六面體SKIPIF1<0中,M為SKIPIF1<0與SKIPIF1<0的交點(diǎn).記SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則下列正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用平行六面體的性質(zhì)以及空間向量的線性運(yùn)算即可求解.【詳解】由題意可知:在平行六面體SKIPIF1<0中,M為SKIPIF1<0與SKIPIF1<0的交點(diǎn),所以SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選:SKIPIF1<0.重難點(diǎn)2共線問(wèn)題8.設(shè)SKIPIF1<0,SKIPIF1<0是空間中兩個(gè)不共線的向量,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且A,B,D三點(diǎn)共線,則實(shí)數(shù)SKIPIF1<0;【答案】SKIPIF1<0;【分析】A,B,D三點(diǎn)共線,故存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,再由已知條件表示出SKIPIF1<0與SKIPIF1<0,建立方程組可求出SKIPIF1<0和SKIPIF1<0值.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)锳,B,D三點(diǎn)共線,所以存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.【點(diǎn)睛】本題考查了空間向量中三點(diǎn)共線問(wèn)題,共線向量定理常常用來(lái)解決此問(wèn)題.9.在正方體SKIPIF1<0中,點(diǎn)E,F(xiàn)分別是底面SKIPIF1<0和側(cè)面SKIPIF1<0的中心,若SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0/-0.5【分析】作圖,連接連接SKIPIF1<0,SKIPIF1<0,構(gòu)造三角形中位線解題﹒【詳解】如圖,連接SKIPIF1<0,SKIPIF1<0,則點(diǎn)E在SKIPIF1<0上,點(diǎn)F在SKIPIF1<0上,易知SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<010.(多選)若空間中任意四點(diǎn)O,A,B,P滿足SKIPIF1<0=mSKIPIF1<0+nSKIPIF1<0,其中m+n=1,則結(jié)論正確的有(
)A.P∈直線AB B.P?直線ABC.O,A,B,P四點(diǎn)共面 D.P,A,B三點(diǎn)共線【答案】ACD【解析】由題意可得SKIPIF1<0,代入向量式化簡(jiǎn)可得SKIPIF1<0,可得向量共線,進(jìn)而可得三點(diǎn)共線,可得結(jié)論.【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0=SKIPIF1<0SKIPIF1<0,即SKIPIF1<0=n(SKIPIF1<0),即SKIPIF1<0=nSKIPIF1<0,所以SKIPIF1<0共線.又SKIPIF1<0有公共起點(diǎn)A,所以P,A,B三點(diǎn)在同一直線上,即P∈直線AB.因?yàn)镾KIPIF1<0=mSKIPIF1<0+nSKIPIF1<0,故O,A,B,P四點(diǎn)共面.故答案為:ACD【點(diǎn)睛】本題考查平面向量的共線問(wèn)題,熟練表示出向量共線的條件是解決問(wèn)題的關(guān)鍵,屬中檔題.11.已知SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0與SKIPIF1<0的方向相同,且SKIPIF1<0,則λ的值為;(2)若SKIPIF1<0與SKIPIF1<0的方向相反,且SKIPIF1<0,則λ的值為.【答案】SKIPIF1<0SKIPIF1<0【分析】根據(jù)向量共線可得答案.【詳解】由于SKIPIF1<0,所以當(dāng)SKIPIF1<0,SKIPIF1<0同向時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0反向時(shí),SKIPIF1<0.故答案為:①SKIPIF1<0;②SKIPIF1<0.12.已知SKIPIF1<0是空間的一個(gè)基底,下列不能與SKIPIF1<0,SKIPIF1<0構(gòu)成空間的另一個(gè)基底的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)基底向量任意兩向量不共線,三個(gè)向量不共面可判斷求解.【詳解】由SKIPIF1<0,SKIPIF1<0,兩式相加可得SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0共面故SKIPIF1<0不能與SKIPIF1<0,SKIPIF1<0構(gòu)成空間的另一個(gè)基底.故選:A13.已知平面單位向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若使SKIPIF1<0成立的正數(shù)SKIPIF1<0有且只有一個(gè),則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0/SKIPIF1<0【分析】由向量的模的計(jì)算公式得SKIPIF1<0,再根據(jù)一元二次方程的根的判別式可求得答案.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.由于使SKIPIF1<0成立的正數(shù)SKIPIF1<0有且只有一個(gè),故關(guān)于以SKIPIF1<0為未知數(shù)的一元二次方程有且只有一個(gè)正實(shí)數(shù)根,故SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0故舍去,則SKIPIF1<0.故SKIPIF1<0的范圍是唯一一個(gè)實(shí)數(shù)SKIPIF1<0,故答案為:SKIPIF1<0.14.如圖,在正方體SKIPIF1<0中,E在SKIPIF1<0上,且SKIPIF1<0,F(xiàn)在對(duì)角線A1C上,且SKIPIF1<0若SKIPIF1<0.(1)用SKIPIF1<0表示SKIPIF1<0.(2)求證:E,F(xiàn),B三點(diǎn)共線.【答案】(1)SKIPIF1<0;(2)證明見解析.【分析】(1)由已知得SKIPIF1<0,由此可得答案;(2)由已知得SKIPIF1<0SKIPIF1<0,由此可得證.【詳解】解:(1)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,又SKIPIF1<0與SKIPIF1<0相交于B,所以E,F(xiàn),B三點(diǎn)共線.15.如圖,已知SKIPIF1<0為空間的9個(gè)點(diǎn),且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.求證:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)證明見解析;(2)證明見解析.【分析】(1)由題意,SKIPIF1<0,轉(zhuǎn)化SKIPIF1<0,代入結(jié)合題干條件運(yùn)算即得證;(2)由題意,SKIPIF1<0,又SKIPIF1<0,運(yùn)算即得證【詳解】證明:(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0.(2)SKIPIF1<0.重難點(diǎn)3向量的共面問(wèn)題16.已知空間SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)共面,且其中任意三點(diǎn)均不共線,設(shè)SKIPIF1<0為空間中任意一點(diǎn),若SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】B【分析】根據(jù)空間四點(diǎn)共面的充要條件代入即可解決.【詳解】SKIPIF1<0,即SKIPIF1<0整理得SKIPIF1<0由SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)共面,且其中任意三點(diǎn)均不共線,可得SKIPIF1<0,解之得SKIPIF1<0故選:B17.已知點(diǎn)SKIPIF1<0在平面SKIPIF1<0內(nèi),并且對(duì)空間任一點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】根據(jù)四點(diǎn)共面的知識(shí)列方程,由此求得SKIPIF1<0.【詳解】由于SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<018.已知SKIPIF1<0三點(diǎn)不共線,對(duì)于平面SKIPIF1<0外的任意一點(diǎn)SKIPIF1<0,判斷在下列各條件下的點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0是否共面.(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)共面(2)不共面【分析】(1)根據(jù)空間向量的共面定理及推論,即可求解;(2)根據(jù)空間向量的共面定理及推論,即可求解;【詳解】(1)解:因?yàn)镾KIPIF1<0三點(diǎn)不共線,可得SKIPIF1<0三點(diǎn)共面,對(duì)于平面SKIPIF1<0外的任意一點(diǎn)SKIPIF1<0,若SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,根據(jù)空間向量的共面定理,可得點(diǎn)SKIPIF1<0與SKIPIF1<0共面.(2)解:因?yàn)镾KIPIF1<0三點(diǎn)不共線,可得SKIPIF1<0三點(diǎn)共面,對(duì)于平面SKIPIF1<0外的任意一點(diǎn)SKIPIF1<0,若SKIPIF1<0,此時(shí)SKIPIF1<0,根據(jù)空間向量的共面定理,可得點(diǎn)SKIPIF1<0與SKIPIF1<0不共面.19.已知SKIPIF1<0為兩個(gè)不共線的非零向量,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0四點(diǎn)共面.【答案】證明見解析【分析】用共面向量定理證明SKIPIF1<0共面,即可得四點(diǎn)共面.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0為兩個(gè)不共線的非零向量,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面,故原命題得證.20.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是三個(gè)不共面的向量,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面,則SKIPIF1<0的值為.【答案】-3【分析】由題知存在實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,代入條件,比較系數(shù)列方程求解.【詳解】若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面,則存在實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:-3.21.下列條件中,一定使空間四點(diǎn)P?A?B?C共面的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】要使空間中的SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)共面,只需滿足SKIPIF1<0,且SKIPIF1<0即可.【詳解】對(duì)于A選項(xiàng),SKIPIF1<0,SKIPIF1<0,所以點(diǎn)SKIPIF1<0與SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)不共面;對(duì)于B選項(xiàng),SKIPIF1<0,SKIPIF1<0,所以點(diǎn)SKIPIF1<0與SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)不共面;對(duì)于C選項(xiàng),SKIPIF1<0,SKIPIF1<0,所以點(diǎn)SKIPIF1<0與SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)不共面;對(duì)于D選項(xiàng),SKIPIF1<0,SKIPIF1<0,所以點(diǎn)SKIPIF1<0與SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共面.故選:D.22.若{SKIPIF1<0,SKIPIF1<0,SKIPIF1<0}構(gòu)成空間的一個(gè)基底,則下列向量不共面的是(
)A.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【答案】C【分析】由平面向量基本定理逐項(xiàng)判斷可得答案.【詳解】由平面向量基本定理得:對(duì)于A選項(xiàng),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三個(gè)向量共面;對(duì)于B選項(xiàng),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三個(gè)向量共面;對(duì)于C選項(xiàng),則存在實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0,則SKIPIF1<0共面,與已知矛盾,因此C選項(xiàng)中向量不共面;對(duì)于D選項(xiàng),SKIPIF1<0,所以三個(gè)向量共面;故選:C.知識(shí)點(diǎn)1空間向量的夾角如圖,已知兩個(gè)非零向量SKIPIF1<0,在空間任取一點(diǎn)SKIPIF1<0,作SKIPIF1<0,則SKIPIF1<0叫做向量SKIPIF1<0的夾角,記作SKIPIF1<0,夾角的范圍:SKIPIF1<0,特別地,如果SKIPIF1<0,那么向量SKIPIF1<0互相垂直,記作SKIPIF1<0知識(shí)點(diǎn)2空間向量的數(shù)量積運(yùn)算1.空間向量的數(shù)量積已知兩個(gè)非零向量SKIPIF1<0,則SKIPIF1<0叫做SKIPIF1<0的數(shù)量積,記作SKIPIF1<0,即SKIPIF1<0.零向量與任意向量的數(shù)量積為0,即SKIPIF1<0.2.?dāng)?shù)量積的運(yùn)算律數(shù)乘向量與數(shù)量積的結(jié)合律SKIPIF1<0交換律SKIPIF1<0分配律SKIPIF1<03.投影向量在空間,向量SKIPIF1<0向向量SKIPIF1<0投影,由于它們是自由向量,因此可以先將它們平移到同一個(gè)平面α內(nèi),進(jìn)而利用平面上向量的投影,得到與向量SKIPIF1<0共線的向量SKIPIF1<0,SKIPIF1<0,向量SKIPIF1<0稱為向量SKIPIF1<0在向量SKIPIF1<0上的投影向量.4.?dāng)?shù)量積的性質(zhì)若SKIPIF1<0,SKIPIF1<0為非零向量,則(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0重難點(diǎn)4空間向量數(shù)量積的運(yùn)算23.在正四面體SKIPIF1<0中,棱長(zhǎng)為1,且D為棱SKIPIF1<0的中點(diǎn),則SKIPIF1<0的值為(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】在正四面體SKIPIF1<0中,由中點(diǎn)性質(zhì)可得SKIPIF1<0,則SKIPIF1<0可代換為SKIPIF1<0,由向量的數(shù)量積公式即可求解.【詳解】如圖,因?yàn)镈為棱SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0,由正四面體得性質(zhì),SKIPIF1<0與SKIPIF1<0的夾角為60°,同理SKIPIF1<0與SKIPIF1<0的夾角為60°,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,故選:D.24.如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別為棱SKIPIF1<0、SKIPIF1<0的中點(diǎn),則SKIPIF1<0.【答案】SKIPIF1<0【分析】分析可知SKIPIF1<0,SKIPIF1<0,利用空間向量數(shù)量積的運(yùn)算性質(zhì)可求得SKIPIF1<0的值.【詳解】因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,同理可知SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.25.在棱長(zhǎng)為1的正方體SKIPIF1<0中,SKIPIF1<0為棱SKIPIF1<0上任意一點(diǎn),則SKIPIF1<0=.【答案】1【分析】根據(jù)空間向量的線性運(yùn)算及數(shù)量積的運(yùn)算性質(zhì)求解.【詳解】如圖,在正方體中,SKIPIF1<0為棱SKIPIF1<0上任意一點(diǎn),則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:1.26.給出下列命題:①空間中任意兩個(gè)單位向量必相等;②若空間向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0;③在向量的數(shù)量積運(yùn)算中SKIPIF1<0;④對(duì)于非零向量SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,其中假命題的個(gè)數(shù)是.【答案】4【分析】根據(jù)空間向量的性質(zhì),結(jié)合數(shù)量積公式,逐一分析各個(gè)選項(xiàng),即可得答案.【詳解】對(duì)于①:空間中任意兩個(gè)單位向量的方向不能確定,故不一定相等,故①錯(cuò)誤;對(duì)于②:空間向量SKIPIF1<0滿足SKIPIF1<0,但方向可能不同,故不能得到SKIPIF1<0,故②錯(cuò)誤;對(duì)于③:數(shù)量積運(yùn)算不滿足結(jié)合律,故③錯(cuò)誤;對(duì)于④:由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,無(wú)法得到SKIPIF1<0,故④錯(cuò)誤.所以錯(cuò)誤的命題個(gè)數(shù)為4.故答案為:427.已知空間四面體D-ABC的每條棱長(zhǎng)都等于1,點(diǎn)E,F(xiàn)分別是AB,AD的中點(diǎn),則SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題意可得SKIPIF1<0,再利用空間向量的數(shù)量積運(yùn)算即可得到答案.【詳解】因?yàn)辄c(diǎn)SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又因?yàn)榭臻g四面體D-ABC的每條棱長(zhǎng)都等于1,所以SKIPIF1<0是等邊三角形,則SKIPIF1<0,所以SKIPIF1<0.故選:B..28.設(shè)SKIPIF1<0、SKIPIF1<0為空間中的任意兩個(gè)非零向量,有下列各式:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中正確的個(gè)數(shù)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用空間向量數(shù)量積的定義可判斷①、②、③;利用空間向量數(shù)量積的運(yùn)算律可判斷④.【詳解】對(duì)于①,SKIPIF1<0,①正確;對(duì)于②,向量不能作比值,即SKIPIF1<0錯(cuò)誤,②錯(cuò)誤;對(duì)于③,設(shè)SKIPIF1<0、SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0,③錯(cuò)誤;對(duì)于④,由空間向量數(shù)量積的運(yùn)算性質(zhì)可得SKIPIF1<0,④正確.故選:B.【點(diǎn)睛】本題考查利用空間向量數(shù)量積的定義與運(yùn)算性質(zhì)判斷等式的正誤,屬于基礎(chǔ)題.29.已知向量SKIPIF1<0,向量SKIPIF1<0與SKIPIF1<0的夾角都是SKIPIF1<0,且SKIPIF1<0,試求(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)11(2)SKIPIF1<0【分析】(1)計(jì)算SKIPIF1<0,展開計(jì)算得到答案.(2)SKIPIF1<0,代入計(jì)算得到答案.【詳解】(1)向量SKIPIF1<0,向量SKIPIF1<0與SKIPIF1<0的夾角都是SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<030.在三棱錐SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0【答案】SKIPIF1<0【分析】用SKIPIF1<0表示SKIPIF1<0,根據(jù)條件列出方程建立SKIPIF1<0的關(guān)系,利用等量代換計(jì)算SKIPIF1<0即得.【詳解】設(shè)SKIPIF1<0,顯然SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,于是得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0重難點(diǎn)5用數(shù)量積解決夾角問(wèn)題31.如圖,在平行六面體ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形,側(cè)棱AA1的長(zhǎng)度為4,且∠A1AB=∠A1AD=120°.用向量法求:(1)BD1的長(zhǎng);(2)直線BD1與AC所成角的余弦值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用向量模的計(jì)算公式和向量的數(shù)量積的運(yùn)算即得出BD1的長(zhǎng);(2)分別求出SKIPIF1<0的值,代入數(shù)量積求夾角公式,即可求得異面直線BD1與AC所成角的余弦值.【詳解】(1)∵SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0=24,∴SKIPIF1<0的長(zhǎng)為SKIPIF1<0,(2)∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,所以直線BD1與AC所成角的余弦值為SKIPIF1<0.32.(多選)如圖所示,平行六面體SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下列說(shuō)法中正確的是(
)A.SKIPIF1<0B.SKIPIF1<0C.直線SKIPIF1<0與直線SKIPIF1<0是相交直線D.SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0【答案】ABD【分析】對(duì)選項(xiàng)A,根據(jù)SKIPIF1<0,再平方即可判斷A正確,對(duì)選項(xiàng)B,根據(jù)SKIPIF1<0,即可判斷B正確,對(duì)選項(xiàng)C,根據(jù)圖形即可判斷C錯(cuò)誤,對(duì)選項(xiàng)D,根據(jù)空間向量夾角公式即可判斷D正確.【詳解】對(duì)選項(xiàng)A,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故A正確;對(duì)選項(xiàng)B,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故B正確;對(duì)C,直線SKIPIF1<0與直線SKIPIF1<0是異面直線,C錯(cuò)誤;對(duì)D,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以,SKIPIF1<0,于是SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0.故選:ABD33.已知向量SKIPIF1<0都是空間向量,且SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】利用向量夾角公式、范圍及已知求SKIPIF1<0的大小.【詳解】由題設(shè)SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<034.已知不共面的三個(gè)向量SKIPIF1<0都是單位向量,且夾角都是SKIPIF1<0,則向量SKIPIF1<0和SKIPIF1<0的夾角為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)題意計(jì)算得SKIPIF1<0,SKIPIF1<0,進(jìn)而計(jì)算夾角即可得答案.【詳解】解:由題意,得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0設(shè)向量SKIPIF1<0和SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:C.35.如圖,在平行六面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為線段SKIPIF1<0中點(diǎn).(1)求SKIPIF1<0;(2)求直線SKIPIF1<0與SKIPIF1<0所成角的余弦值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)首先設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0,再平方即可得到答案;(2)由SKIPIF1<0,得SKIPIF1<0,代入SKIPIF1<0計(jì)算即可.【詳解】(1)因?yàn)樵谄叫辛骟wSKIPIF1<0中,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且滿足SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,這三個(gè)向量不共面,SKIPIF1<0構(gòu)成空間的一個(gè)基底.所以SKIPIF1<0SKIPIF1<0.SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(2)由(1)知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0.36.如圖,二面角SKIPIF1<0的棱上有兩個(gè)點(diǎn)A,B,線段SKIPIF1<0和SKIPIF1<0分別在這個(gè)二面角的兩個(gè)面內(nèi),并且都垂直于棱l.若SKIPIF1<0,則平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值為.【答案】SKIPIF1<0【分析】設(shè)這個(gè)二面角的度數(shù)為SKIPIF1<0,由題意得SKIPIF1<0,從而得到SKIPIF1<0.【詳解】解:設(shè)平面SKIPIF1<0與平面SKIPIF1<0的夾角的度數(shù)為SKIPIF1<0,由題意得SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0與平面SKIPIF1<0的夾角的余弦值為SKIPIF1<0.故答案為:SKIPIF1<0.重難點(diǎn)6投影向量37.在標(biāo)準(zhǔn)正交基SKIPIF1<0下,已知向量SKIPIF1<0SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0在SKIPIF1<0上的投影為,在SKIPIF1<0上的投影之積為.【答案】-1256【分析】根據(jù)向量的加法求得SKIPIF1<0,即可得SKIPIF1<0在SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上的投影分別為-12,8,7,即可得答案.【詳解】解:易得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上的投影分別為-12,8,7,其在SKIPIF1<0,SKIPIF1<0上的投影之積為SKIPIF1<0.故答案為:-12;56.38.已知SKIPIF1<0,向量SKIPIF1<0為單位向量,SKIPIF1<0,則空間向量SKIPIF1<0在向量SKIPIF1<0方向上投影為.【答案】SKIPIF1<0【分析】根據(jù)投影的定義結(jié)合已知條件求解即可.【詳解】因?yàn)镾KIPIF1<0,向量SKIPIF1<0為單位向量,SKIPIF1<0,所以向量SKIPIF1<0在向量SKIPIF1<0方向上投影為SKIPIF1<0.故答案為:SKIPIF1<039.如圖,在長(zhǎng)方體SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,分別求向量SKIPIF1<0在SKIPIF1<0、SKIPIF1<0、SKIPIF1<0方向上的投影數(shù)量.【答案】向量SKIPIF1<0在SKIPIF1<0、SKIPIF1<0、SKIPIF1<0方向上的投影數(shù)量分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0.【分析】分析可得SKIPIF1<0,利用投影數(shù)量公式可求得向量SKIPIF1<0在SKIPIF1<0、SKIPIF1<0、SKIPIF1<0方向上的投影數(shù)量.【詳解】解:非零向量SKIPIF1<0在非零向量SKIPIF1<0方向上的投影數(shù)量為SKIPIF1<0,由空間向量的平行六面體法則可得SKIPIF1<0,在長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0,因此,向量SKIPIF1<0在SKIPIF1<0方向上的投影數(shù)量為SKIPIF1<0,向量SKIPIF1<0在SKIPIF1<0方向上的投影數(shù)量為SKIPIF1<0,向量SKIPIF1<0在SKIPIF1<0方向上的投影數(shù)量為SKIPIF1<0.40.如圖,已知SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0在SKIPIF1<0上的投影向量等于.【答案】SKIPIF1<0【分析】先求出SKIPIF1<0,再根據(jù)投影向量的公式計(jì)算即可.【詳解】SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0向量SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0.41.在棱長(zhǎng)為SKIPIF1<0的正方體SKIPIF1<0中,向量SKIPIF1<0在向量SKIPIF1<0方向上的投影向量的模是.【答案】SKIPIF1<0【分析】由正方體的性質(zhì)可得向量SKIPIF1<0與向量SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度木材綜合利用技術(shù)研發(fā)合同樣本7篇
- 2025年加盟商店面維護(hù)協(xié)議
- 2025版巡游出租車特許經(jīng)營(yíng)合同修訂版五3篇
- 2025版家居建材銷售合同終止與綠色環(huán)保認(rèn)證協(xié)議
- 2025年度船舶港口日常保潔與維護(hù)服務(wù)合同3篇
- 五氧化二釩項(xiàng)目評(píng)價(jià)分析報(bào)告
- 二零二五年度能源合同解除協(xié)議
- 二零二五年度出租車租賃合同司機(jī)休息區(qū)域與設(shè)施協(xié)議
- 二零二五年度海域使用權(quán)租賃及海洋資源綜合利用技術(shù)服務(wù)合同
- 二零二五年度股東變更后的董事會(huì)組成與授權(quán)協(xié)議
- 中國(guó)聯(lián)合網(wǎng)絡(luò)通信有限公司招聘筆試題庫(kù)2024
- 【社會(huì)工作介入精神障礙社區(qū)康復(fù)問(wèn)題探究的文獻(xiàn)綜述5800字】
- 節(jié)前停工停產(chǎn)與節(jié)后復(fù)工復(fù)產(chǎn)安全注意事項(xiàng)課件
- 設(shè)備管理績(jī)效考核細(xì)則
- 中國(guó)人民銀行清算總中心直屬企業(yè)2023年招聘筆試上岸歷年典型考題與考點(diǎn)剖析附帶答案詳解
- (正式版)SJT 11449-2024 集中空調(diào)電子計(jì)費(fèi)信息系統(tǒng)工程技術(shù)規(guī)范
- 人教版四年級(jí)上冊(cè)加減乘除四則混合運(yùn)算300題及答案
- 合成生物學(xué)技術(shù)在生物制藥中的應(yīng)用
- 消化系統(tǒng)疾病的負(fù)性情緒與心理護(hù)理
- 高考語(yǔ)文文學(xué)類閱讀分類訓(xùn)練:戲劇類(含答案)
- 協(xié)會(huì)監(jiān)事會(huì)工作報(bào)告大全(12篇)
評(píng)論
0/150
提交評(píng)論