版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
Chapter3ComplexMotionofParticle(orPoint)
§3.1Basicconceptofcomplexmotionofparticle
§
3.2Velocitycompositiontheoremofparticle§
3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation§
3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation
Maincontents1.
Whatiscomplexmotionofparticle?Motionisrelative.Amotionrelativetoareferenceobjectcanbecomposedofseveralsimplemotionsrelativetootherreferenceobjects.Themotioniscalled
complexmotion.2.ProblemstosolvebytheoryofcomplexmotionofparticleAcomplexmotioncanbedecomposedintotwosimplemotions.Thevaluesofcomplexmotioncanbecomposedbythoseoftwosimplemotions.Therelationsofthemotionofeverycomponentinthemovingmechanism.Therelationoftwomovingobjectswithoutdirectiveconnection.(1)AmovingpointApointintheresearchingobject.(2)Tworeferencesystems(3)Three
kindsof
motionsApoint,tworeferencesystems,andthreekindsofmotionsFixedreferencesystem:Areferencesystemfixedtotheearthground.Movingreferencesystem:
Areferencesystemfixedtoamovingobjectrelativetotheearthground.Absolutemotion:Motionofthemovingpointrelativetothefixedreferencesystem.Relativemotion:
Motionofthemovingpointrelativetothemovingreferencesystem.Transportmotion:Motionofthemovingreferencesystemrelativetothefixedreferencesystem.
3.1BasicconceptofcomplexmotionofparticleAbsolutemotionRelativemotionTransportmotionBothofabsolutemotionandrelativemotionaremotionsofaparticle.Transportmotionismotionofreferenceobject,actuallymotionofarigidbody.
3.1BasicconceptofcomplexmotionofparticleCorrespondingtoabsolutemotion:AbsolutetrajectoryAbsolute
velocityAbsoluteaccelerationCorrespondingtorelativemotion:
RelativetrajectoryRelativevelocityRelativeaccelerationThereisn’ttrajectoryfortransportmotion,becauseitisn’taparticle,butarigidbody.Correspondingtotransportmotion:TransportvelocityTransportaccelerationTransportvelocity
and
transportacceleration
arethevelocityandaccelerationofthepointinthemovingreferencesystemcoincidingwiththemovingpoint(transportpoint)
relativetothefixedreferencesystematanyinstantoftime.
3.1BasicconceptofcomplexmotionofparticleExample
3-1Crankrockermechanism,thecrankOAisconnectedtothesleevebypinA,andthesleeveissetontherockerO1B.WhenthecrankrotatesaroundtheOaxiswithangularvelocityω,therockerO1BisdriventoswingaroundtheO1axisthroughthesleeve.AnalyzethemotionoftheApoint.
3.1BasicconceptofcomplexmotionofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin
A
onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.
3.1BasicconceptofcomplexmotionofparticleHowtoselectthemovingpointandmovingsystem1.Themovingsystemcanberegardedasaninfiniterigidbody,andthebasicmotionoftherigidbodyistranslationalandfixed-axisrotation.Therefore,themovingsystemisgenerallytakenasthecoordinatesystemoftranslationalmotionorfixed-axisrotation.2.Themovingpointandthemovingreferencecannotbechosenonthesameobject,otherwisetherelativemotionofthemovingpointwithrespecttothemovingreferencewilldisappear.3.Themovingpointmustalwaysbethesamepointinthesystem,andstudyitsmotionatdifferentmoments.Itisnotallowedtotakeapointatoneinstantandanotherpointasthemovingpointatthenextinstant.1.TheoremAtanyinstantoftime,theabsolutevelocityofamovingpointisequaltothegeometricsumofitsrelativevelocityandtransportvelocity.Thisisthe
velocitycompositiontheoremofpoint.
Theabsolutevelocityofamovingpointcanbedeterminedbythediagonallineoftheparallelogramcomposedbyitstransportvelocityandrelativevelocity.
Thisisthe
parallelogramofvelocity.
3.2Velocitycompositiontheoremofparticle
moveto
2.Provement
3.2VelocitycompositiontheoremofparticleExample
3-2
Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularvelocityω1oftherockingbarwhenthecrankmovestothehorizontalposition.
3.2VelocitycompositiontheoremofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin
A
onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.
3.2Velocitycompositiontheoremofparticle3.VelocityanalysisvavevrAbsolutevelocityva:va=OA·ω
=rω,
Direction:verticaltoOA,plumbedupwardsTransportvelocity
ve:ve
istheunknownquantity,andneedtobesolvedDirection:verticaltoO1BRelativevelocityvr:themagnitudeisunknownDirection:alongtherockingbarO1B
Accordingtothevelocitycompositiontheoremofapoint
3.2Velocitycompositiontheoremofparticle∵∴Supposetheangularvelocityoftherockingbaratthemomentisω1,yieldsSovavevr
3.2Velocitycompositiontheoremofparticle1.Relativeandabsolutederivativeofvector●MOxyzisafixedcoordinatesystem,andO1x1y1z1isamotioncoordinatesystem,theradiusvectorofthemovingpointMinthemotionsystemisWetakethetimederivativeinthefixedsystemtoobtainThisistheabsoluterateofchangeofthevectorr1Takethederivativeofr1withrespecttotimeinthemotionsystemtoobtainThisistherelativerateofchangeofthevectorr13.3Accelerationcompositiontheoremwhenthetransportmotionistranslation2.Threekindsofaccelerations(1)Absoluteacceleration(2)Relativeacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M2.Threekindsofaccelerations(3)Transportacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M3.AccelerationcompositiontheoremWhenthemotionsystemistranslatingmotion,andi1,j1,k1
areconstantvectors,andtheirmagnitudesanddirectionsareconstant,sotheirtimederivativesareallzero,wecangetAccelerationcompositiontheoremwhenthetransportmotionistranslation3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●MExample
3-3
Aplanemechanismshowninthefigure,thecrankOA=r,rotatesuniformlywithangularvelocityω0.SleeveAcanslidsalongthebarBC.BC=DE,且BD=CE=l.FindtheangularvelocityandangularaccelerationofBDatthemomentshowninthefigure.ABCDEOω0ωαSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystemMovingreferencesystem-Cx′y′,fixedtothebar
BC.2.MotionanalysisTransportmotion-translationMovingpoint-slideblock
A.Fixedreferencesystem-
fixedtothebase.ABCDEOω0ωαx'y'Absolutemotion-CircularmotionwithcentreORelativemotion-straightlinemotionalongBCABCDEOω0ωαvBvevavr3.VelocityanalysisyieldsSotheangularvelocityof
BDAbsolute
velocity
va:va=ω0r,verticalto
OA
downwards.
Transportvelocity
ve:ve=
vB,verticalto
BDrightdownwands.
Relativevelocity
vr:magnitudeunknown,along
BCleftEmployingthetheoremofcompositionofvelocities4.AccelerationanalysisAbsoluteacceleration
aa:aa=ωor
,along
OA,pointtoOTransportaccelerationae:tangentialcomponentaet:sametoaBt,magnitude
unknown,verticaltoDB,
supposedownwardsRelativeacceleration
ar:magnitude
unknown,along
BC,
supposetoleftnormalcomponentaen:aen
=aBn=
ω2l
=ωo2r2
/l,alongDB,
pointtoDaaarABCDEOω0ωα
Projecttoaxisy,
yieldsyieldsApplyingthecompositiontheoremofaccelerationsSotheangularaccelerationof
BD:
aaarABCDEOωαyAfixedcoordinatesystemOxyzandmotioncoordinatesystemOx1y1z1,letthemovingpointMmoveinthemotionsystemOx1y1z1,andthemotionsystemOx1y1z1rotatesaboutthez-axisofthefixedsystemwithangularvelocityωandangularaccelerationε●MBasedonthepreviousproofofthevelocitycompositiontheorem,wehave
TherelativevelocityandrelativeaccelerationofthemovingpointM3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationAndthen
Basedonthevelocitycompositiontheorem:AccordingtothePoissonformula:3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation
Coriolisacceleration:Thisistheaccelerationcompositiontheoremwhenthetransportmotionisrotation.3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationExample
3-4Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.F
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 造價咨詢招標(biāo)文件的特點
- 高質(zhì)量印刷服務(wù)合同協(xié)議書模板
- 影視主持人兼職合同
- 補充協(xié)議與合同的關(guān)系分析
- 專業(yè)營銷服務(wù)合同
- 低碳出行和諧生活的構(gòu)建
- 園林綠化苗木購銷合同
- 硬件購買與技術(shù)支持合同模板
- 土地使用權(quán)轉(zhuǎn)讓合同履行障礙
- 模板選購合同內(nèi)容
- 廣東省廣州市越秀區(qū)2023-2024學(xué)年八年級上學(xué)期期末道德與法治試題(含答案)
- 北京市海淀區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 英語 含答案
- 國開2024年秋《大數(shù)據(jù)技術(shù)概論》形考作業(yè)1-4答案
- 技能人才評價新職業(yè)考評員培訓(xùn)在線考試(四川省)
- 生物化學(xué)實驗智慧樹知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 2023年秋季國家開放大學(xué)-02154-數(shù)據(jù)庫應(yīng)用技術(shù)期末考試題帶答案
- 湘教版八上數(shù)學(xué)知識點歸納
- 肝衰竭的護理查房
- 綠化起重吊裝專項方案
- 可比樓盤量化定價法
- xxxxx年豬文化節(jié)
評論
0/150
提交評論