2022年安徽省合肥市蜀山區(qū)中考數(shù)學一模試卷(含答案)_第1頁
2022年安徽省合肥市蜀山區(qū)中考數(shù)學一模試卷(含答案)_第2頁
2022年安徽省合肥市蜀山區(qū)中考數(shù)學一模試卷(含答案)_第3頁
2022年安徽省合肥市蜀山區(qū)中考數(shù)學一模試卷(含答案)_第4頁
2022年安徽省合肥市蜀山區(qū)中考數(shù)學一模試卷(含答案)_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022年安徽省合肥市蜀山區(qū)中考數(shù)學一模試卷一、選擇題(本大題共10小題,每小題4分,滿分40分)每小題都給出A,B,C,D四個選項,其中只有一個是符合題目要求的.1.(4分)在﹣2,,0,﹣1這四個數(shù)中,最小的數(shù)是()A.﹣2B.C.0D.﹣12.(4分)承載著復興夢想的京張高鐵,冬奧期間向世界展現(xiàn)“中國力量”和“中國自信”.京張高鐵,總投資584億元,584億用科學記數(shù)法表示為()A.5.84×1011B.584×108C.5.84×1010D.0.584×10113.(4分)下列立體圖形中,主視圖是三角形的是()A.B.C.D.4.(4分)計算a?(﹣a2)3的結(jié)果是()A.a(chǎn)6B.﹣a6C.a(chǎn)7D.﹣a75.(4分)兩個直角三角板ABC,ADE如圖擺放,其中∠BAC=∠DEA=90°,∠B=45°,∠D=60°,若DE∥BC,則∠BAD的大小為()A.15°B.22.5°C.30°D.45°6.(4分)“穩(wěn)字當頭”的中國經(jīng)濟是全球經(jīng)濟的“穩(wěn)定器”,穩(wěn)就業(yè),保民生,防風險,守住“穩(wěn)”的基礎(chǔ),才有更多“進”的空間.2020,2021這兩年中國經(jīng)濟的年平均增長率為5.1%,其中2021年的年增長率為8.1%,若設(shè)2020年的年增長率為x,則可列方程為()A.8.1%(1﹣x)2=5.1%B.(1+x)(1+8.1%)=(1+5.1%)2C.5.1%(1+x)2=8.1%D.(1+x)(1+8.1%)=2(1+5.1%)7.(4分)已知:a+b+c=0,a<b<c,若一次函數(shù)y=ax+c的圖象經(jīng)過點A,則點A的坐標不可以是()A.(﹣2,3)B.(﹣2,﹣3)C.(2,3)D.(2,﹣3)8.(4分)甲乙兩臺機床同時生產(chǎn)同一種零件,在某周的工作日內(nèi),兩臺機床每天生產(chǎn)次品的個數(shù)整理成甲、乙兩組數(shù)據(jù),如表,關(guān)于以上數(shù)據(jù),下列說法正確的是()星期機床星期一星期二星期三星期四星期五甲20432乙13404A.甲、乙的眾數(shù)相同B.甲、乙的中位數(shù)相同C.甲的平均數(shù)大于乙的平均數(shù)D.甲的方差小于乙的方差9.(4分)如圖,A,B表示足球門邊框(不考慮球門的高度)的兩個端點,點C表示射門點,連接AC,BC,則∠ACB就是射門角.在不考慮其它因素的情況下,一般射門角越大,射門進球的可能性就越大.球員甲帶球線路ED與球門AB垂直,D為垂足,點C在ED上,當∠ACB最大時就是帶球線路ED上的最佳射門角.若AB=4,BD=1,則當球員甲在此次帶球中獲得最佳射門角時DC的長度為()A.2B.3C.D.10.(4分)如圖,在平面直角坐標系中,已知點A(﹣2,0),B(﹣2.2),C(0,2),當拋物線y=2(x﹣a)2+2a與四邊形OABC的邊有交點時a的取值范圍是()A.﹣1≤a≤0B.≤a≤C.﹣4≤a≤D.≤a≤二、填空題(本大題共4小題,每小題5分,滿分20分)11.(5分)使有意義的x的取值范圍是.12.(5分)分解因式:ab2﹣ac2=.13.(5分)如圖,在平面直角坐標系中,點A的坐標為(4,0),點B在第一象限,且△OAB為等邊三角形,若反比例函數(shù)y=在第一象限的圖象經(jīng)過邊AB的中點,則k的值為.14.(5分)已知:如圖,△ABC中,BA=BC,∠ABC=70°,AC=4.點D是平面內(nèi)動點,且AD=1,將BD繞點B順時針旋轉(zhuǎn)70°得到BE,連接AE.(1)在點D運動的過程中,AE的最小長度為.(2)在點D運動的過程中,當AE的長度最長時,則∠DAB=.三、(本大題共2小題,每小題8分,滿分16分)15.(8分)計算:20220﹣(﹣3)2+×.16.(8分)觀察以下等式:第1個等式:×(1+)=3﹣;第2個等式:×(1+)=3﹣;第3個等式:×(1+)=3﹣;第4個等式:×(1+)=3﹣;……按照以上規(guī)律,解決下列問題:(1)寫出第5個等式:;(2)寫出你猜想的第n個等式:(用含n的等式表示),并證明.四、(本大題共2小題,每小題8分,滿分16分)17.(8分)如圖,在每個小正方形的邊長為1個單位的網(wǎng)格中,△ABC的頂點均在格點(網(wǎng)格線的交點)上.(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1(點A1,B1,C1分別為A,B,C的對應點);(2)將(1)中的△A1B1C1繞原點O逆時針旋轉(zhuǎn)90°得到△A2B2C2,畫出△A2B2C2(點A2,B2,C2分別為A1,B1,C1的對應點).18.(8分)如圖,教學樓AB與旗桿CD的距離BC=12m,O在AB上,且OB=1.5m.在某次數(shù)學活動課中,甲小組在A測得旗桿頂部D的俯角為30°,同時乙小組從O處測得旗桿頂部D的仰角為38.7°.求教學樓AB的高度(精確到0.1m).(參考數(shù)據(jù):sin38.7°≈0.63,cos38.7≈0.78,tan38.7°≈0.80,≈1.73)五、(本大題共2小題,每小題10分,滿分20分)19.(10分)如圖,△ABC中,∠BAC=45°,AC,BC交以AB為直徑的半⊙O于D,E.連接AE,BD,交點為F.(1)證明:AF=BC;(2)當點F是BD中點時,求BE:EC值.20.(10分)一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=(m≠0)的圖象交于點A(﹣3,1)和點B(a,3).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)O為坐標原點,求點O到直線AB的距離.六、(本大題滿分12分)21.(12分)教育部去年4月份發(fā)布《關(guān)于進一步加強中小學生睡眠管理工作的通知》,提出多項措施改善和保證學生睡眠時間.今年年初,某中學為了解九年級學生的睡眠狀況,從九年級學生中隨機抽取部分學生進行問卷調(diào)查,睡眠時間x時,分為A:x≥9,B:8≤x<9,C:7≤x<8,D:x<7四個睡眠時間段.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了名學生,請補全條形統(tǒng)計圖;(2)若該中學九年級共有1200名學生,請你估計該中學九年級學生中睡眠時間段為C的學生有多少名?(3)若從睡眠時間段為D的2名男生2名女生中隨機的抽取2名學生,了解睡眠時間較少的原因,求所抽取的兩人恰好都是女生的概率.七、(本大題滿分12分)22.(12分)在平面直角坐標系xOy中,拋物線y=x2﹣2ax+a﹣2與x軸交點為A,B.(1)判斷點(,﹣)是否在拋物線y=x2﹣2ax+a﹣2上,并說明理由;(2)當線段AB長度為4時,求a的值;(3)若w=AB2,w是否存在最值,若存在請求出最值,若不存在請說明由.八、(本大題滿分14分)23.(14分)已知:如圖1,△ABC中,∠CAB=120°,AC=AB,點D是BC上一點,其中∠ADC=α(30°<α<90°),將△ABD沿AD所在的直線折疊得到△AED,AE交CB于F,連接CE.(1)求∠CDE與∠AEC的度數(shù)(用含α的代數(shù)式表示);(2)如圖2,當α=45°時,解決以下問題:①已知AD=2,求CE的值;②證明:DC﹣DE=AD.

2022年安徽省合肥市蜀山區(qū)中考數(shù)學一模試卷參考答案與試題解析一、選擇題(本大題共10小題,每小題4分,滿分40分)每小題都給出A,B,C,D四個選項,其中只有一個是符合題目要求的.1.(4分)在﹣2,,0,﹣1這四個數(shù)中,最小的數(shù)是()A.﹣2B.C.0D.﹣1【分析】有理數(shù)大小比較的法則:①正數(shù)>0>負數(shù);②兩個負數(shù),絕對值大的其值反而小,據(jù)此判斷即可.【解答】解:∵|﹣2|=2,|﹣1|=1,而2>1,∴﹣2<﹣1<0,∴其中最小的數(shù)是﹣2.故選:A.【點評】此題主要考查了有理數(shù)大小比較,掌握有理數(shù)大小比較方法是解答本題的關(guān)鍵.2.(4分)承載著復興夢想的京張高鐵,冬奧期間向世界展現(xiàn)“中國力量”和“中國自信”.京張高鐵,總投資584億元,584億用科學記數(shù)法表示為()A.5.84×1011B.584×108C.5.84×1010D.0.584×1011【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥10時,n是正整數(shù),當原數(shù)絕對值<1時,n是負整數(shù).【解答】解:584億=58400000000=5.84×1010.故選:C.【點評】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.3.(4分)下列立體圖形中,主視圖是三角形的是()A.B.C.D.【分析】根據(jù)各個幾何體的主視圖的形狀進行判斷即可.【解答】解:A.圓柱的主視圖是矩形,故本選項不合題意;B.圓錐的主視圖是三角形,故本選項符合題意;C.立方體的主視圖是正方形,故本選項不合題意;D.三棱柱的主視圖是矩形,故本選項不合題意;故選:B.【點評】本題考查簡單幾何體的三視圖,掌握各種幾何體的三視圖的形狀是正確判斷的前提.4.(4分)計算a?(﹣a2)3的結(jié)果是()A.a(chǎn)6B.﹣a6C.a(chǎn)7D.﹣a7【分析】利用冪的乘方的法則,同底數(shù)冪的乘法的法則進行求解即可.【解答】解:a?(﹣a2)3=a?(﹣a6)=﹣a7.故選:D.【點評】本題主要考查冪的乘方,同底數(shù)冪的乘法,解答的關(guān)鍵是對相應的運算法則的掌握與運用.5.(4分)兩個直角三角板ABC,ADE如圖擺放,其中∠BAC=∠DEA=90°,∠B=45°,∠D=60°,若DE∥BC,則∠BAD的大小為()A.15°B.22.5°C.30°D.45°【分析】由平行線的性質(zhì)可得∠AOB=90°,利用直角三角形的性質(zhì)可求解∠BAE=45°,∠DAE=30°,進而可求解.【解答】解:∵DE∥BC,∠AED=90°,∴∠AOB=∠AED=90°,∵∠B=45°,∴∠BAE=90°﹣45°=45°,∵∠D=60°,∴∠DAE=90°﹣60°=30°,∴∠BAD=∠BAE﹣∠DAE=45°﹣30°=15°,故選:A.【點評】本題主要考查平行線的性質(zhì),直角三角形的性質(zhì),求解∠BAE,∠DAE的度數(shù)是解題的關(guān)鍵.6.(4分)“穩(wěn)字當頭”的中國經(jīng)濟是全球經(jīng)濟的“穩(wěn)定器”,穩(wěn)就業(yè),保民生,防風險,守住“穩(wěn)”的基礎(chǔ),才有更多“進”的空間.2020,2021這兩年中國經(jīng)濟的年平均增長率為5.1%,其中2021年的年增長率為8.1%,若設(shè)2020年的年增長率為x,則可列方程為()A.8.1%(1﹣x)2=5.1%B.(1+x)(1+8.1%)=(1+5.1%)2C.5.1%(1+x)2=8.1%D.(1+x)(1+8.1%)=2(1+5.1%)【分析】增長率問題,一般用增長后的量=增長前的量×(1+增長率),根據(jù)等量關(guān)系列出方程即可求解.【解答】解:根據(jù)題意可得:(1+x)(1+8.1%)=(1+5.1%)2.故選:B.【點評】本題考查了由實際問題抽象出一元二次方程的知識,解此類題一般是根據(jù)題意分別列出不同時間按增長率所得中國經(jīng)濟相等的方程.7.(4分)已知:a+b+c=0,a<b<c,若一次函數(shù)y=ax+c的圖象經(jīng)過點A,則點A的坐標不可以是()A.(﹣2,3)B.(﹣2,﹣3)C.(2,3)D.(2,﹣3)【分析】根據(jù)條件得出a<0,c>0,所以一次函數(shù)經(jīng)過一、二、四象限即可判斷.【解答】解:∵a+b+c=0,a<b<c,∴a<0,c>0,∴y=ax+c的圖象經(jīng)過一、二、四象限,∵(﹣2,3)在第二象限,(﹣2,﹣3)在第三象限,(2,3)在第一象限,(2,﹣3)在第四象限,∴(﹣2,﹣3)不在函數(shù)圖象上,故選:B.【點評】本題考查了一次函數(shù)的圖象,根據(jù)a和c的符號判斷圖象經(jīng)過的象限是解決本題的關(guān)鍵.8.(4分)甲乙兩臺機床同時生產(chǎn)同一種零件,在某周的工作日內(nèi),兩臺機床每天生產(chǎn)次品的個數(shù)整理成甲、乙兩組數(shù)據(jù),如表,關(guān)于以上數(shù)據(jù),下列說法正確的是()星期機床星期一星期二星期三星期四星期五甲20432乙13404A.甲、乙的眾數(shù)相同B.甲、乙的中位數(shù)相同C.甲的平均數(shù)大于乙的平均數(shù)D.甲的方差小于乙的方差【分析】分別計算出甲、乙兩組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)及方差,再進一步求解可得.【解答】解:甲組數(shù)據(jù)2、0、4、3、2的平均數(shù)為×(2+0+4+3+3)=2.2,眾數(shù)為2,中位數(shù)為2,方差為×[(2﹣2.2)2×2+(0﹣2.2)2+(3﹣2.2)2]+(4﹣2.2)2=1.76,乙組數(shù)據(jù)1、3、4、0、4的平均數(shù)為×(1+3+4+0+4)=2.4,眾數(shù)為4,中位數(shù)為3,方差為×[(4﹣2.4)2×2+(0﹣2.4)2+(1﹣2.4)2]+(3﹣2.4)2=2.64,∴甲的平均數(shù)小于乙的平均數(shù),甲、乙的眾數(shù)不相等、中位數(shù)不相等,甲的方差小于乙的方差,故選:D.【點評】此題主要考查了眾數(shù)、中位數(shù)、方差和平均數(shù),關(guān)鍵是掌握眾數(shù)、中位數(shù)、平均數(shù)及方差的概念和方差公式.9.(4分)如圖,A,B表示足球門邊框(不考慮球門的高度)的兩個端點,點C表示射門點,連接AC,BC,則∠ACB就是射門角.在不考慮其它因素的情況下,一般射門角越大,射門進球的可能性就越大.球員甲帶球線路ED與球門AB垂直,D為垂足,點C在ED上,當∠ACB最大時就是帶球線路ED上的最佳射門角.若AB=4,BD=1,則當球員甲在此次帶球中獲得最佳射門角時DC的長度為()A.2B.3C.D.【分析】根據(jù)當球員甲在此次帶球中獲得最佳射門角時,△DBC∽△DAC,根據(jù)相似三角形的性質(zhì)健康得到結(jié)論.【解答】解:當△DBC∽△DAC時,∠ACB最大,∴,∴CD2=BD?AD=1×(1+4+)=5,∴CD=,故球員甲在此次帶球中獲得最佳射門角時DC的長度為,故選:C.【點評】本題考查了相似三角形的應用,熟練掌握相似三角形的性質(zhì)是解題的關(guān)鍵.10.(4分)如圖,在平面直角坐標系中,已知點A(﹣2,0),B(﹣2.2),C(0,2),當拋物線y=2(x﹣a)2+2a與四邊形OABC的邊有交點時a的取值范圍是()A.﹣1≤a≤0B.≤a≤C.﹣4≤a≤D.≤a≤【分析】根據(jù)拋物線的解析式得出拋物線開口向上,頂點為(a,2a),然后分兩種情況討論,求得經(jīng)過四邊形頂點的坐標時的a的值,根據(jù)圖象即可得到a的取值范圍.【解答】解:∵拋物線y=2(x﹣a)2+2a,∴拋物線開口向上,頂點為(a,2a),當a<0時,把A(﹣2,0)代入整理得0=a2+5a+4,解得a=﹣1,a=﹣4;把B(﹣2,2)代入整理得0=a2+5a+2,解得a=,當a>0時,把B(﹣2,2)代入整理得0=a2+5a+2,解得a=(不合題意,舍去);把C(0,2)代入整理得0=a2+a﹣1,解得a=(負數(shù)舍去),綜上,當拋物線y=2(x﹣a)2+2a與四邊形OABC的邊有交點時a的取值范圍是≤a≤,故選:B.【點評】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點的坐標特征,分類討論、數(shù)形結(jié)合是解題的關(guān)鍵.二、填空題(本大題共4小題,每小題5分,滿分20分)11.(5分)使有意義的x的取值范圍是x≥2.【分析】當被開方數(shù)x﹣2為非負數(shù)時,二次根式才有意義,列不等式求解.【解答】解:根據(jù)二次根式的意義,得x﹣2≥0,解得x≥2.【點評】主要考查了二次根式的意義和性質(zhì).概念:式子(a≥0)叫二次根式.性質(zhì):二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.12.(5分)分解因式:ab2﹣ac2=a(b+c)(b﹣c).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣c2)=a(b+c)(b﹣c),故答案為:a(b+c)(b﹣c)【點評】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.13.(5分)如圖,在平面直角坐標系中,點A的坐標為(4,0),點B在第一象限,且△OAB為等邊三角形,若反比例函數(shù)y=在第一象限的圖象經(jīng)過邊AB的中點,則k的值為3.【分析】過B作BD⊥OA于D,則B(2,2),進一步求得AB的中點為(3,),代入y=即可求得k的值.【解答】解:過B作BD⊥OA于D,∵點A的坐標為(4,0),點B在第一象限,且△OAB為等邊三角形,∴B(2,2),∴AB的中點為(3,),∵反比例函數(shù)y=在第一象限的圖象經(jīng)過邊AB的中點,∴k=3×=3,故答案為:3.【點評】本題考查了反比例函數(shù)圖象上點的坐標特征,等邊三角形的性質(zhì),中點坐標的求法,求得B點以及AB的中點的坐標是解題的關(guān)鍵.14.(5分)已知:如圖,△ABC中,BA=BC,∠ABC=70°,AC=4.點D是平面內(nèi)動點,且AD=1,將BD繞點B順時針旋轉(zhuǎn)70°得到BE,連接AE.(1)在點D運動的過程中,AE的最小長度為3.(2)在點D運動的過程中,當AE的長度最長時,則∠DAB=125°.【分析】(1)連接CE,證明△ABD≌△CBE(SAS),得出CE=AD=1,當點E在線段AC上時,AE最小,則可得出答案;(2)在點D運動的過程中,當AE的長度最長時,點E在AC的延長線上,此時AE最大值=4+1=5;由等腰三角形的性質(zhì)可得出答案.【解答】解:(1)連接CE,如圖1,∵BD=BE,BA=BC,∠ABD=∠CBE,∴△ABD≌△CBE(SAS),∴CE=AD=1,當點E在線段AC上時,AE最小,AE最小值=4﹣1=3;故答案為:3;(2)在點D運動的過程中,當AE的長度最長時,點E在AC的延長線上,由(1)可知AD=CE=1,此時AE最大值=4+1=5;此時D、A、C、E在一條直線上,點D在CA的延長線上,如圖2,∵BA=BC,∠ABC=70°,∴∠BAC=55°,∴∠DAB=180°﹣55°=125°;故答案為:125°.【點評】本題考查了全等三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.三、(本大題共2小題,每小題8分,滿分16分)15.(8分)計算:20220﹣(﹣3)2+×.【分析】根據(jù)零指數(shù)冪、乘方、二次根式化簡進行計算即可求解.【解答】解:20220﹣(﹣3)2+×=1﹣9+6=﹣2.【點評】本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握乘方、零指數(shù)冪、二次根式等知識點的運算.16.(8分)觀察以下等式:第1個等式:×(1+)=3﹣;第2個等式:×(1+)=3﹣;第3個等式:×(1+)=3﹣;第4個等式:×(1+)=3﹣;……按照以上規(guī)律,解決下列問題:(1)寫出第5個等式:;(2)寫出你猜想的第n個等式:(用含n的等式表示),并證明.【分析】(1)分析所給的等式中變化的數(shù)字與等式序號數(shù)的關(guān)系有怎樣的規(guī)律,便可根據(jù)此規(guī)律寫出第5個等式;(2)分析所給的等式的形式,即可得出第n個等式,再把等式左邊進行整理即可求證.【解答】解:(1)∵第1個等式:×(1+)=3﹣,即;第2個等式:×(1+)=3﹣,即;第3個等式:×(1+)=3﹣,即;第4個等式:×(1+)=3﹣,即;……∴寫出第5個等式為:,即,故答案為:;(2))第n個等式為,即,證明:∵,∴.故答案:.【點評】本題主要考查數(shù)字的變化規(guī)律,解答的關(guān)鍵是由所給的等式總結(jié)出存在的規(guī)律.四、(本大題共2小題,每小題8分,滿分16分)17.(8分)如圖,在每個小正方形的邊長為1個單位的網(wǎng)格中,△ABC的頂點均在格點(網(wǎng)格線的交點)上.(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1(點A1,B1,C1分別為A,B,C的對應點);(2)將(1)中的△A1B1C1繞原點O逆時針旋轉(zhuǎn)90°得到△A2B2C2,畫出△A2B2C2(點A2,B2,C2分別為A1,B1,C1的對應點).【分析】(1)利用軸對稱變換的性質(zhì)分別作出A,B,C的對應點A1,B1,C1即可;(2)利用旋轉(zhuǎn)變換的性質(zhì)分別作出A1,B1,C1的對應點A2,B2,C2即可.【解答】解:(1)如圖,△A1B1C1即為所求;(2)如圖,△A2B2C2即為所求.【點評】本題考查作圖﹣旋轉(zhuǎn)變換,軸對稱變換等知識,解題的關(guān)鍵是掌握旋轉(zhuǎn)變換的性質(zhì),軸對稱變換的性質(zhì),屬于中考??碱}型.18.(8分)如圖,教學樓AB與旗桿CD的距離BC=12m,O在AB上,且OB=1.5m.在某次數(shù)學活動課中,甲小組在A測得旗桿頂部D的俯角為30°,同時乙小組從O處測得旗桿頂部D的仰角為38.7°.求教學樓AB的高度(精確到0.1m).(參考數(shù)據(jù):sin38.7°≈0.63,cos38.7≈0.78,tan38.7°≈0.80,≈1.73)【分析】過點O作OE⊥CD,垂足為E,過點A作AF⊥CD,交CD的延長線于點F,根據(jù)題意可得OB=CE=1.5m,AB=CF,OE=AF=BC=12m,然后分別在Rt△DOE和Rt△AFD中,利用銳角三角函數(shù)的定義求出DF,DE的長,進行計算即可解答.【解答】解:過點O作OE⊥CD,垂足為E,過點A作AF⊥CD,交CD的延長線于點F,則OB=CE=1.5m,AB=CF,OE=AF=BC=12m,在Rt△DOE中,∠DOE=38.7°,∴DE=OEtan38.7°≈12×0.80=9.6(m),在Rt△AFD中,∠FAD=30°,∴DF=AFtan30°=12×=4(m),∴EF=FD+DE+EC=4+9.6+1.5≈18.0(m),∴AB=EF=18.0(m),∴教學樓AB的高度為18.0m.【點評】本題考查了解直角三角形的應用﹣仰角俯角問題,根據(jù)題目的已知條件并結(jié)合圖形添加適當?shù)妮o助線是解題的關(guān)鍵.五、(本大題共2小題,每小題10分,滿分20分)19.(10分)如圖,△ABC中,∠BAC=45°,AC,BC交以AB為直徑的半⊙O于D,E.連接AE,BD,交點為F.(1)證明:AF=BC;(2)當點F是BD中點時,求BE:EC值.【分析】(1)由圓周角定理推論可得∠ADB=∠AEB=90°,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,根據(jù)∠DAF+∠AFD=∠BFE+∠FEB=90°,且∠AFD=∠BFE,即可得出∠DAF=∠FBE,則可證明△ADF≌△BDC,即可得出答案;(2)設(shè)DF=a,則DF=BF=a,可得AD=BD=2a,根據(jù)勾股定理可得AF===a,由(1)中結(jié)論可得AF=BC=,由∠ADF=∠BEF=90°,∠AFD=∠BFE,可證明△ADF∽△BEF,則,可得BE=a,由CE=BC﹣BE可得出CE的長度,計算即可得出答案.【解答】證明:(1)∵AB是⊙O的直徑,∴∠ADB=∠AEB=90°,∵∠BAC=45°,∴AD=BD,∵∠DAF+∠AFD=∠BFE+∠FEB=90°,∠AFD=∠BFE,∴∠DAF=∠FBE,在△ADF和△BDC中,,∴△ADF≌△BDC(ASA),∴AF=BC;(2)設(shè)DF=a,則DF=BF=a,∴AD=BD=2a,在Rt△ADF中,AF===a,∴AF=BC=,∵∠ADF=∠BEF=90°,∠AFD=∠BFE,∴△ADF∽△BEF,∴,∴,∴BE=a,∴CE=BC﹣BE=a﹣a=a,∴==.【點評】本題主要考查了圓周角定理及相似三角形的性質(zhì),熟練掌握圓周角定理及相似三角形的性質(zhì)進行求解是解決本題的關(guān)鍵.20.(10分)一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=(m≠0)的圖象交于點A(﹣3,1)和點B(a,3).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)O為坐標原點,求點O到直線AB的距離.【分析】(1)把點A(﹣3,1)代入y2=(m≠0),即可求得反比例函數(shù)的解析式,進一步求得點B的坐標,然后利用待定系數(shù)法求得一次函數(shù)的解析式;(2)求得直線與坐標軸的交點,然后利用三角形面積公式即可求得點O到直線AB的距離.【解答】解:(1)∵反比例函數(shù)y2=(m≠0)的圖象過點A(﹣3,1),∴m=﹣3×1=﹣3,∴反比例函數(shù)為y=﹣,把點B(a,3)代入得,3=﹣,∴a=﹣1,∴B(﹣1,3),把點A(﹣3,1)和點B(﹣1,3)代入y1=kx+b(k≠0)得,解得,∴一次函數(shù)的解析式為y=x+4,(2)設(shè)直線y=x+4交x軸于C,交y軸于D,令x=0,則y=4;令y=0,則x=﹣4,∴C(﹣4,0),D(0,4),∴OC=OD=4,∴CD==4,設(shè)點O到直線AB的距離為h,∴S△COD==,解得h=2,∴點O到直線AB的距離為2.【點評】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,待定系數(shù)法求函數(shù)的解析式以及三角形的面積,求得函數(shù)的解析式是解題的關(guān)鍵.六、(本大題滿分12分)21.(12分)教育部去年4月份發(fā)布《關(guān)于進一步加強中小學生睡眠管理工作的通知》,提出多項措施改善和保證學生睡眠時間.今年年初,某中學為了解九年級學生的睡眠狀況,從九年級學生中隨機抽取部分學生進行問卷調(diào)查,睡眠時間x時,分為A:x≥9,B:8≤x<9,C:7≤x<8,D:x<7四個睡眠時間段.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了50名學生,請補全條形統(tǒng)計圖;(2)若該中學九年級共有1200名學生,請你估計該中學九年級學生中睡眠時間段為C的學生有多少名?(3)若從睡眠時間段為D的2名男生2名女生中隨機的抽取2名學生,了解睡眠時間較少的原因,求所抽取的兩人恰好都是女生的概率.【分析】(1)由A類別人數(shù)及其所占百分比可得總?cè)藬?shù),總?cè)藬?shù)減去A、B、D人數(shù)求出C對應人數(shù),從而補全圖形;(2)用總?cè)藬?shù)乘以樣本中C對應人數(shù)所占比例即可;(3)畫樹狀圖,再由概率公式求解即可.【解答】解:(1)本次抽樣調(diào)查的學生人數(shù)為12÷24%=50(名),C類別人數(shù)為50﹣(12+26+4)=8(名),補全圖形如下:(2)估計該中學九年級學生中睡眠時間段為C的學生有1200×=192(名);(3)畫樹狀圖如圖:共有12個等可能的結(jié)果,所抽取的兩人恰好都是女生的結(jié)果有2個,∴抽取的兩人恰好都是女生的概率為=.【點評】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖和扇形統(tǒng)計圖.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.七、(本大題滿分12分)22.(12分)在平面直角坐標系xOy中,拋物線y=x2﹣2ax+a﹣2與x軸交點為A,B.(1)判斷點(,﹣)是否在拋物線y=x2﹣2ax+a﹣2上,并說明理由;(2)當線段AB長度為4時,求a的值;(3)若w=AB2,w是否存在最值,若存在請求出最值,若不存在請說明由.【分析】(1)將點(,﹣)代入拋物線y=x2﹣2ax+a﹣2,進行判斷即可;(2)由x2﹣2ax+a﹣2=0,根據(jù)根與系數(shù)的關(guān)系可得x1+x2=2a,x1?x2=a﹣2,則AB==4,求出a的值即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論