湘教版九年級上冊2.2.1 第2課時 用配方法解二次項系數(shù)為1的一元二次方程課件(共14張PPT)_第1頁
湘教版九年級上冊2.2.1 第2課時 用配方法解二次項系數(shù)為1的一元二次方程課件(共14張PPT)_第2頁
湘教版九年級上冊2.2.1 第2課時 用配方法解二次項系數(shù)為1的一元二次方程課件(共14張PPT)_第3頁
湘教版九年級上冊2.2.1 第2課時 用配方法解二次項系數(shù)為1的一元二次方程課件(共14張PPT)_第4頁
湘教版九年級上冊2.2.1 第2課時 用配方法解二次項系數(shù)為1的一元二次方程課件(共14張PPT)_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第2章 一元二次方程 2.2.1 第2課時 用配方法解二次項系數(shù)為1的一元二次方程根據(jù)平方根的意義, 來解一元二次方程: (x +1)2 81分析:通過“降次”,將一個一元二次方程轉化為兩個一元一次方程.解 :把(1 + x)2看作一個整體解得x1 8, x2 - 10 .知識回顧得1 + x 或1 + x , (1) ( a b )2 ;(2) 把完全平方公式從右到左地使用, 在下列各題中, 填上適當?shù)臄?shù),使等式成立: x2 + 6x + ( x+ )2; x2 - 6x + ( x - )2; x2 + 6x +5 = x2 + 6x + - + 5 = (x + )2- .a 2 2ab

2、b2 93399934式就是把式子寫成(x + n)2 +d的形式,其中n等于一次項系數(shù)的一半新知引入解方程: x2+ 4x = 12. 我們已經(jīng)知道, 如果能把方程寫成(x + n)2 = d(d0)的形式, 那么就可以根據(jù)平方根的意義來求解.x2 + 4x = x2 + 4x + - = (x + )2 - 422222可以將“22”換成其他數(shù)的平方嗎?獲取新知x2 + 4x + 22 - 22 = 12,目的是把左邊化成(x + n)2的形式因此, 有x2 + 4x + 22 = 22 + 12.即 (x + 2 )2 = 16.根據(jù)平方根的意義, 得x + 2 = 4 或 x + 2

3、= -4.解得x1 =2, x2 = -6 一般地, 像上面這樣, 在方程x2 + 4x = 12 的左邊加上一次項系數(shù)的一半的平方,再減去這個數(shù),使得含未知數(shù)的項在一個完全平方式里,這種做法叫作配方 配方法是為了直接使用平方根的意義,從而把一元二次方程轉換成兩個一元一次方程來求解。 配方、整理后就可以直接根據(jù)平方根的意義來求解了這種解一元二次方程的方法叫作配方法 歸納總結例 用配方法解下列方程(1) x2 + 10 x + 9 = 0;(2) x2 - 12x - 13 = 0.例題講解(1) x2 + 10 x + 9 = 0;解:配方,得解得 x1 =-1,x2 = -9.(2) x2

4、- 12x - 13 = 0.解:配方,得解得 x1 =13,x2 = -1.1.配方:方程左邊加上一次項系數(shù)一半的平方,再減去這個數(shù);2.移項:方程左邊寫成完全平方式,把多余的常數(shù)項移到方程的右邊;3.開方:根據(jù)平方根的意義,方程兩邊開平方,得到兩個一次方程;4.求解:分別解兩個一元一次方程,寫出原方程的解.用配方法解形如x2+bx+c=0的一元二次方程的步驟1、填空:(1)x2 + 4x +1 = x2 + 4x + - + 1 = (x + )2- .(2) x2 - 8x - 9 = x2 - 8x + - - 9 = (x - )2- .(3) x2 + 3x - 4 = x2 + 3x + - - 4 = (x + )2- .44231616425隨堂演練2. 用配方法解方程x28x90,變形后的結果正確的是()A(x4)29 B (x4)27C(x4)225 D (x4)27D3、用配方法解下列方程:(1) x2 + 4x + 3= 0;(2) x2 + 8x - 9 = 0;(3) x2 + 8x - 2 = 0;(4) x2 - 5x - 6 = 0.x1 -1, x2 - 3 .x1 1, x2 -9 .x1 6, x2 - 1 .x1 , x2 .課堂小結用配方法解二次項系數(shù)為1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論