下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022學(xué)年江西省贛州市十八塘中學(xué)高一數(shù)學(xué)文模擬試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1. 直線 傾斜角的大小是( )A. B. C. D. 參考答案:B【分析】把直線方程化成斜截式,根據(jù)斜率等于傾斜角的正切求解.【詳解】直線化成斜截式為,因?yàn)?,所以.故選B.【點(diǎn)睛】本題考查直線的斜截式方程和基本性質(zhì),屬于基礎(chǔ)題.2. 從裝有2個(gè)黑球和3個(gè)白球的盒子中任取3個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是( )A恰有一個(gè)白球和恰有兩個(gè)白球 B至少有一個(gè)黑球和都是白球C至少一個(gè)白球和至少一個(gè)黑球 D至少兩個(gè)白球和至少一個(gè)黑
2、球參考答案:A3. 設(shè),其中xR,如果AB=B,求實(shí)數(shù)的取值范圍 參考答案:A=0,-4,又AB=B,所以BA(i)B=時(shí),4(a+1)2-4(a2-1)0,得a-1;(ii)B=0或B=-4時(shí),0 得a=-1;(iii)B=0,-4, 解得a=1綜上所述實(shí)數(shù)a=1 或a-14. K為小于9的實(shí)數(shù)時(shí),曲線與曲線一定有相同的()A焦距B準(zhǔn)線C頂點(diǎn)D離心率參考答案:A【考點(diǎn)】雙曲線的標(biāo)準(zhǔn)方程;橢圓的標(biāo)準(zhǔn)方程【專題】計(jì)算題;轉(zhuǎn)化思想;綜合法;圓錐曲線的定義、性質(zhì)與方程【分析】利用雙曲線和橢圓的簡單性質(zhì)求解【解答】解:K為小于9的實(shí)數(shù)時(shí),曲線是焦點(diǎn)在x軸的雙曲線,曲線的焦距為8,準(zhǔn)線方程為x=,有四個(gè)
3、項(xiàng)點(diǎn),離心率為,曲線的焦距為8,準(zhǔn)線方程為x=,有兩個(gè)頂點(diǎn),離心率為曲線與曲線一定有相同的焦距故選:A【點(diǎn)評(píng)】本題考查兩曲線是否有相同的焦距、準(zhǔn)線、焦點(diǎn)、離心率的判斷,是基礎(chǔ)題,解題時(shí)要注意雙曲線和橢圓的簡單性質(zhì)的合理運(yùn)用5. 已知全集,集合,則C= ( )A(-,0 B2,+ C D0,2參考答案:C6. 函數(shù)的圖像的大致形狀是( )參考答案:D略7. 在R上定義運(yùn)算,則關(guān)于x的函數(shù)的最大值是( )A B C D參考答案:C8. 若,則的值為 ( )A6 B3 C D參考答案:A9. 過點(diǎn)的切線有兩條,則a 的取值范圍( ) 參考答案:D略10. 已知是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),則函
4、數(shù)在區(qū)間3,7上所有零點(diǎn)之和為( )A. 4B. 6C. 8D. 12參考答案:C【分析】根據(jù)函數(shù)的奇偶性和對(duì)稱性,判斷出函數(shù)的周期,由此畫出的圖像.由化簡得,畫出的圖像,由與圖像的交點(diǎn)以及對(duì)稱性,求得函數(shù)在區(qū)間上所有零點(diǎn)之和.【詳解】由于,故是函數(shù)的對(duì)稱軸,由于為奇函數(shù),故函數(shù)是周期為的周期函數(shù),當(dāng)時(shí),由此畫出的圖像如下圖所示.令,注意到,故上述方程可化為,畫出的圖像,由圖可知與圖像都關(guān)于點(diǎn)(2,0)對(duì)稱,它們兩個(gè)函數(shù)圖像的4個(gè)交點(diǎn)也關(guān)于點(diǎn)對(duì)稱,所以函數(shù)在區(qū)間上所有零點(diǎn)之和為.故選:C.【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性、對(duì)稱性以及周期性,考查函數(shù)零點(diǎn)問題的求解策略,考查數(shù)形結(jié)合的數(shù)學(xué)思想方
5、法,屬于中檔題.二、 填空題:本大題共7小題,每小題4分,共28分11. 已知冪函數(shù)過點(diǎn),則函數(shù)的解析式是_參考答案:設(shè)冪函數(shù)的解析式為:,冪函數(shù)過點(diǎn),解得:,故函數(shù)的解析式為:12. 已知函數(shù)f (x)=與函數(shù)d(x) = ,則這兩個(gè)函數(shù)圖象的公共點(diǎn)的坐標(biāo)為 .參考答案:(1,1) 就x為負(fù)有理數(shù),非負(fù)有理數(shù),負(fù)無理數(shù),非負(fù)無理數(shù)解方程f (x) = d (x)13. 在菱形ABCD中,對(duì)角線AC=4,E為CD的中點(diǎn),則= 參考答案:12【考點(diǎn)】平面向量數(shù)量積的運(yùn)算【專題】計(jì)算題;轉(zhuǎn)化思想;向量法;平面向量及應(yīng)用【分析】設(shè)菱形的邊長為a,運(yùn)用向量的加法運(yùn)算和中點(diǎn)的向量表示,結(jié)合向量數(shù)量積的性
6、質(zhì):向量的平方即為模的平方,運(yùn)用整體代入,計(jì)算即可得到所求值【解答】解:設(shè)菱形的邊長為a,由=+,可得2=2+2+2,即有16=2a2+2,即a2+=8,則=(+)(+)=(+)(+)=2+2+=(a2+)=8=12故答案為:12【點(diǎn)評(píng)】本題考查向量的運(yùn)算,主要考查向量的數(shù)量積的性質(zhì):向量的平方即為模的平方,考查運(yùn)算能力,屬于中檔題14. 在矩形ABCD中,AB=2,BC=1,現(xiàn)將ABC沿對(duì)角線AC折起,使點(diǎn)B到達(dá)點(diǎn)B的位置,使平面ABC與平面ACD垂直得到三棱錐BACD,則三棱錐BACD的外接球的表面積為參考答案:5【考點(diǎn)】球內(nèi)接多面體;球的體積和表面積【分析】由題意,AC的中點(diǎn)為球心,求出
7、球的半徑,即可求出三棱錐BACD的外接球的表面積【解答】解:由題意,AC的中點(diǎn)為球心,AB=2,BC=1,AC=,球的半徑為,三棱錐BACD的外接球的表面積為5故答案為515. 已知角構(gòu)成公差為的等差數(shù)列,若,則= 。參考答案: 略16. 已知:集合,定義集合運(yùn)算AA=,則AA= 。參考答案:17. 某工廠8年來某產(chǎn)品產(chǎn)量y與時(shí)間t年的函數(shù)關(guān)系如下圖,則:前3年總產(chǎn)量增長速度增長速度越來越快;前3年中總產(chǎn)量增長速度越來越慢;第3年后,這種產(chǎn)品停止生產(chǎn);第3年后,這種產(chǎn)品年產(chǎn)量保持不變.以上說法中正確的是_參考答案: 略三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步
8、驟18. 某學(xué)校高一年級(jí)有學(xué)生400名,高二年級(jí)有500學(xué)生名.現(xiàn)用分層抽樣方法(按高一年級(jí)、高二年級(jí)分二層)從該校的學(xué)生中抽取90名學(xué)生,調(diào)查他們的數(shù)學(xué)學(xué)習(xí)能力.()高一年級(jí)學(xué)生中和高二年級(jí)學(xué)生中各抽取多少學(xué)生?()通過一系列的測(cè)試,得到這90名學(xué)生的數(shù)學(xué)能力值.分別如表一和表二表一:高一年級(jí)50,60)60,70)70,80)80,90)90,100)人數(shù)48x61表二:高二年級(jí)50,60)60,70)70,80)80,90)90,100)人數(shù)36y1511確定x,y,并在答題紙上完成頻率分布直方圖;分別估計(jì)該校高一年級(jí)學(xué)生和高二年級(jí)學(xué)生的數(shù)學(xué)能力值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)
9、值作代表);根據(jù)已完成的頻率分布直方圖,指出該校高一年級(jí)學(xué)生和高二年級(jí)學(xué)生的數(shù)學(xué)能力值分布特點(diǎn)的不同之處(不用計(jì)算,通過觀察直方圖直接回答結(jié)論)參考答案:解:()高一年級(jí)學(xué)生中抽取名,高二年級(jí)學(xué)生中抽取名學(xué)生;(),;頻率分布直方圖: 高一學(xué)生數(shù)學(xué)能力值的辨率分布直方圖 高二學(xué)生數(shù)學(xué)能力值的辨率分布直方圖樣本中高一年級(jí)學(xué)生的數(shù)學(xué)能力值的平均數(shù)是:;樣本中高二年級(jí)學(xué)生數(shù)學(xué)能力值的平均數(shù)是:;由此估計(jì)該校高一年級(jí)學(xué)生數(shù)學(xué)能力值的平均數(shù)是,高二年級(jí)學(xué)生的數(shù)學(xué)能力值的平均數(shù)是.該校高二年級(jí)學(xué)生的數(shù)學(xué)能力值平均數(shù)高于高一年級(jí)學(xué)生,高二年級(jí)學(xué)生的數(shù)學(xué)能力值的差異程度比高一年級(jí)學(xué)生人19. (14分)已知=
10、(1,2),=(3,2),當(dāng)k為何值時(shí):(1)k+與3垂直;(2)k+與3平行,平行時(shí)它們是同向還是反向?參考答案:考點(diǎn):平面向量數(shù)量積的運(yùn)算;平行向量與共線向量 專題:平面向量及應(yīng)用分析:(1)由題意可得 k+ 和3 的坐標(biāo),由 k+ 與3 垂直可得它們的數(shù)量積等于 0,由此解得k的值(2)由 k+ 與3 平行的性質(zhì),可得(k3)(4)(2k+2)10=0,解得k的值再根據(jù) k+ 和3 的坐標(biāo),可得k+ 與3 方向相反解答:(1)由題意可得 k+=(k3,2k+2),3=(10,4),由 k+ 與3 垂直可得 (k3,2k+2)?(10,4)=10(k3)+(2k+2)(4)=0,解得k=1
11、9(2)由 k+ 與3 平行,可得(k3)(4)(2k+2)10=0,解得k=,此時(shí),k+=+=(,),3=(10,4),顯然k+ 與3方向相反點(diǎn)評(píng):本題主要考查兩個(gè)向量的數(shù)量積公式的應(yīng)用,兩個(gè)向量共線、垂直的性質(zhì),屬于中檔題20. (10分)已知,若。(1)求值。(2)求實(shí)數(shù)a的取值范圍。參考答案:(1)A=.(2分) .(5分) (2).(10分)21. 若不等式x2-ax+b0的解集。參考答案:解:方程x2-ax-b=0的解集為2,3, -(2分)由韋達(dá)定理a=2+3=5,b=23=6,不等式bx2-ax+10化為6x2-5x+10 -(2分) 解得x-(2分)略22. 已知ABC的內(nèi)切圓半徑為2,且tanA=,求ABC面積的最小值 參考答案:解:設(shè)AB=c, BC=a, AC=b,D為切點(diǎn),可知:2AD+2a=a+b+c得:AD=(b+c
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025深圳市廠房出租合同范本
- 2025深圳要求公積金須寫入勞動(dòng)合同如果沒有這樣做是否是違法
- 二零二五年度金融機(jī)構(gòu)員工勞務(wù)派遣服務(wù)合同3篇
- 二零二五年度四人虛擬現(xiàn)實(shí)四人合伙人協(xié)議3篇
- 二零二五年度教育培訓(xùn)兼職聘用服務(wù)協(xié)議3篇
- 二零二五年度個(gè)人與公司代收代付服務(wù)合同范本3篇
- 二零二五年度教育機(jī)構(gòu)兼職教師服務(wù)合同
- 二零二五年度裝飾材料采購及配送合同2篇
- 2025年度健康食品公司送餐服務(wù)協(xié)議3篇
- 二零二五年度食堂餐飲設(shè)備維護(hù)用工合同2篇
- 奔馳調(diào)研報(bào)告swot
- 中國教育史(第四版)全套教學(xué)課件
- 2024屆廣東省汕頭市高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析
- 采購設(shè)備檢驗(yàn)驗(yàn)收單
- 福建省泉州實(shí)驗(yàn)中學(xué)2024屆物理高一第一學(xué)期期末質(zhì)量檢測(cè)試題含解析
- 公司領(lǐng)導(dǎo)班子設(shè)置方案
- 專業(yè)展覽展示設(shè)計(jì)搭建公司
- 為銅制劑正名-冠菌銅? 產(chǎn)品課件-9-7
- 具有磁場(chǎng)保鮮裝置的制冷設(shè)備的制作方法
- 2023年湖南省農(nóng)村信用社(農(nóng)村商業(yè)銀行)招聘員工筆試參考題庫附答案解析
- 七年級(jí)上英語知識(shí)梳理(牛津上海版)U1-U4
評(píng)論
0/150
提交評(píng)論