yale的知識管理講座4_第1頁
yale的知識管理講座4_第2頁
yale的知識管理講座4_第3頁
yale的知識管理講座4_第4頁
yale的知識管理講座4_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、Introduction to Game TheoryYale BraunsteinJune 2003General approachBriefHistory of GameTheoryPayoffMatrixTypesofGamesBasicStrategiesEvolutionaryConceptsLimitationsandProblemsBriefHistory of GameTheory1913 -E.Zermeloprovidesthefirsttheoremofgame theory;assertsthat chess is strictly determined1928 -Jo

2、hnvonNeumannprovesthe minimaxtheorem1944 -JohnvonNeumann& Oskar Morgenstern writeTheory of Games andEconomicBehavior”1950-1953-John Nashdescribes NashequilibriumRationalityAssumptions:humansare rational beingshumansalways seekthe bestalternativeinasetofpossiblechoicesWhyassume rationality?narrowdown

3、therangeofpossibilitiespredictabilityUtility TheoryUtility Theorybasedon:rationalitymaximizationofutilitymaynot be alinear function of incomeorwealthItisa quantification of apersonspreferenceswithrespect to certainobjects.What is GameTheory?Game theoryisa study of howtomathematicallydeterminethe bes

4、tstrategyfor given conditionsinordertooptimizethe outcomeGame TheoryFinding acceptable, if notoptimal,strategies in conflict situations.Abstractionofreal complexsituationGame theoryishighlymathematicalGame theoryassumes allhumaninteractionscan be understoodand navigatedbypresumptions.Whyisgametheory

5、important?Allintelligentbeings makedecisions allthetime.AIneedstoperform these tasks as aresult.Helpsustoanalyze situationsmorerationally andformulateanacceptablealternativewith respecttocircumstance.Usefulinmodelingstrategic decision-makingGamesagainst opponentsGamesagainst natureTypesofGamesSequen

6、tialvs.SimultaneousmovesSinglePlayvs.IteratedZerovs.non-zerosumPerfectvs.ImperfectinformationCooperativevs.conflictZero-SumGamesThesum of thepayoffs remainsconstantduring thecourseofthe game.TwosidesinconflictBeingwell informed alwayshelpsa playerNon-zeroSumGameThesum of payoffsisnot constant during

7、thecourse of gameplay.Players mayco-operate or competeBeingwell informed mayharm aplayer.GamesofPerfect InformationTheinformationconcerninganopponents moveiswellknowninadvance.Allsequentialmove games areofthis type.ImperfectInformationPartial or no information concerningthe opponent is given in adva

8、ncetothe players decision.Imperfectinformationmay be diminishedovertime if thesame gamewiththesameopponentistoberepeated.KeyAreaofInterestchancestrategyNon-zeroImperfectMatrixNotationNotes:Player IsstrategyA maybedifferentfromPlayerIIs.P2canbeomittedifzero-sumgamePrisoners Dilemma&OtherfamousgamesA

9、sampleofothergames:MarriageDisarmament(mygeneralsaremore irrationalthanyours)Prisoners Dilemma10, 10BlameDontBlameDont20, 00 ,201 ,1Prisoner1Prisoner2Notes:Higherpayoffs (longersentences)arebad.Non-cooperativeequilibrium Joint maximumNCEJt.max.GamesofConflictTwosidescompeting againsteachotherUsually

10、 causedbycompletelack of information about theopponentorthegameCharacteristicofzero-sumgamesGamesofCo-operationPlayers mayimprove payoffthroughcommunicatingforming bindingcoalitions& agreementsdonotapplytozero-sumgamesPrisoners Dilemmawith CooperationPrisoners DilemmawithIterationInfinitenumberofite

11、rationsFear of retaliationFixednumberofiterationDominoeffectBasicStrategies1.Plan ahead andlook back2.Useadominating strategy if possible3.Eliminateany dominatedstrategies4.Look foranyequilibrium5.Mixupthe strategiesPlan ahead andlook backStrategy2Strategy1150100025Strategy1Strategy2- 10YouOpponentI

12、fyouhavea dominatingstrategy,useitStrategy2Strategy1150100025Strategy1Strategy2- 10YouOpponentUse strategy 1Eliminateany dominatedstrategyStrategy2Strategy1150100025Strategy1Strategy2- 10YouOpponentStrategy3-15160Eliminate strategy 2 as its dominated by strategy 1Look foranyequilibriumDominating Equ

13、ilibriumMinimax EquilibriumNash EquilibriumMaximin &MinimaxEquilibriumMinimax -tominimizethe maximumloss(defensive)Maximin -tomaximizethe minimumgain(offensive)Minimax =MaximinMaximin &MinimaxEquilibriumStrategiesStrategy2Strategy1150100025Strategy1Strategy2- 10YouOpponentStrategy3-15160Min1000150-

14、10-15160MaxDefinition:Nash EquilibriumIsthis aNashEquilibrium?Strategy2Strategy1150100025Strategy1Strategy2- 10YouOpponentStrategy3-15160Min1000150- 10-15160MaxCost to press button= 2unitsWhen buttonispressed,food given =10unitsBoxedPigs Example5 ,1PressWaitPressWait9 ,-14 ,40 ,0LittlePigBigDecision

15、s, decisions.Time forreal-lifedecisionmakingHolmes&MoriarityinTheFinalProblemWhat would youdoIfyouwereHolmes?IfyouwereMoriarity?Possiblyinterestingdigressions?Whywas Moriaritysoevil?What reallyhappened?What do we meanbyreality?What changedthe reality?MixedStrategySafe 2Safe 1$ 0$10,000$100,000Safe 1

16、Safe 2$ 0MixedStrategySolutionThePayoff Matrixfor Holmes& MoriarityPlayer #1Player #2Strategy #1Strategy #2Strategy #1Strategy #2Payoff (1,1)Payoff (1,2)Payoff (2,1)Payoff (2,2)CanterburyCanterburyDoverDover0100500HolmesMoriartyEvolutionaryGameTheoryNatural selectionreplacesrationalbehaviorSurvivalo

17、fthefittestWhyuse evolutiontodetermineastrategy?Hawk /DoveGameEvolutionaryStable StrategyIntroduced by MaynardSmithand Price (1973)Strategybecomes stablethroughout thepopulationMutationsbecomingineffectiveHawkDoveHawkDove22100100-5-5HawkDoveHawkDove22100100-5-5Whereisgame theorycurrently used?EcologyNetworksEconomicsLimitations& ProblemsAssumes playersalways maximize their outcomesSome outcomes aredifficulttoprovidea utilityforNotall of thepayoffs canbequantifiedNotapplicabletoallproblem

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論