版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.反比例函數(shù)的圖象如圖所示,以下結論:①常數(shù)m<-1;②在每個象限內,y隨x的增大而增大;③若A(-1,h),B(2,k)在圖象上,則h<k;④若P(x,y)在圖象上,則P′(-x,-y)也在圖象上.其中正確的是A.①② B.②③ C.③④ D.①④2.如圖,以原點O為圓心,半徑為1的弧交坐標軸于A,B兩點,P是上一點(不與A,B重合),連接OP,設∠POB=α,則點P的坐標是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)3.二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+(b﹣)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定4.如圖,若繞點按逆時針方向旋轉后能與重合,則().A. B. C. D.5.如圖,在△ABC中,D,E分別是AB,AC邊上的點,DE∥BC,若AD=4,AB=6,BC=12,則DE等于()A.4 B.6 C.8 D.106.如圖是由6個大小相同的小正方體疊成的幾何體,則它的主視圖是()A. B.C. D.7.若點(﹣2,y1),(﹣1,y2),(3,y3)在雙曲線y=(k<0)上,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y28.如圖示,二次函數(shù)的圖像與軸交于坐標原點和,若關于的方程(為實數(shù))在的范圍內有解,則的取值范圍是()A. B. C. D.9.二次函數(shù)中與的部分對應值如下表所示,則下列結論錯誤的是()A.B.當時,的值隨值的增大而減小C.當時,D.方程有兩個不相等的實數(shù)根10.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點.若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π二、填空題(每小題3分,共24分)11.點A(﹣5,y1),B(3,y2)都在雙曲線y=,則y1,y2的大小關系是_____.12.數(shù)據(jù)3000,2998,3002,2999,3001的方差為__________.13.如圖,在矩形ABCD中,AB=2,BC=4,點E、F分別在BC、CD上,若AE=,∠EAF=45°,則AF的長為_____.14.一次函數(shù)與反比例函數(shù)()的圖象如圖所示,當時,自變量的取值范圍是__________.15.頂點在原點的二次函數(shù)圖象先向左平移1個單位長度,再向下平移2個單位長度后,所得的拋物線經(jīng)過點(0,﹣3),則平移后拋物線相應的函數(shù)表達式為_____.16.如圖,反比例函數(shù)的圖象經(jīng)過矩形OABC的邊AB的中點D,則矩形OABC的面積為.17.已知一列分式,,,,,,…,觀察其規(guī)律,則第n個分式是_______.18.如圖,在中,,,,則的長為________.三、解答題(共66分)19.(10分)如圖,是半圓的直徑,是半圓上的一點,切半圓于點,于為點,與半圓交于點.(1)求證:平分;(2)若,求圓的直徑.20.(6分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=1.(1)求拋物線的函數(shù)表達式.(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.21.(6分)元旦了,九(2)班每個同學都與全班同學交換一件自制的小禮物,結果全班交換小禮物共1560件,求九(2)班有多少個同學?22.(8分)如圖,在O中,弦BC垂直于半徑OA,垂足為E,D是優(yōu)弧BC上一點,連接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度數(shù).(2)若弦BC=8cm,求圖中劣弧BC的長.23.(8分)如圖,已知AB是⊙O的直徑,過點O作弦BC的平行線,交過點A的切線AP于點P,連結AC.求證:△ABC∽△POA.24.(8分)如圖,拋物線y=ax2+2x+c經(jīng)過點A(0,3),B(﹣1,0),請解答下列問題:(1)求拋物線的解析式;(2)拋物線的頂點為點D,對稱軸與x軸交于點E,連接BD,求BD的長;(3)點F在拋物線上運動,是否存在點F,使△BFC的面積為6,如果存在,求出點F的坐標;如果不存在,請說明理由.25.(10分)(1)計算:(2)解方程):26.(10分)已知關于x的一元二次方程x2-2x+m-1=1.(1)若此方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;(2)當Rt△ABC的斜邊長c=,且兩直角邊a和b恰好是這個方程的兩個根時,求Rt△ABC的面積.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】分析:因為函數(shù)圖象在一、三象限,故有m>0,故①錯誤;在每個象限內,y隨x的增大而減小,故②錯;對于③,將A、B坐標代入,得:h=-m,,因為m>0,所以,h<k,故③正確;函數(shù)圖象關于原點對稱,故④正確.因此,正確的是③④.故選C.2、C【解析】過P作PQ⊥OB,交OB于點Q,在直角三角形OPQ中,利用銳角三角函數(shù)定義表示出OQ與PQ,即可確定出P的坐標.解:過P作PQ⊥OB,交OB于點Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,則P的坐標為(cosα,sinα),故選C.3、A【解析】試題分析:設ax2+bx+c=1(a≠1)的兩根為x1,x2,由二次函數(shù)的圖象可知x1+x2>1,a>1,設方程ax2+(b﹣)x+c=1(a≠1)的兩根為a,b再根據(jù)根與系數(shù)的關系即可得出結論.設ax2+bx+c=1(a≠1)的兩根為x1,x2,∵由二次函數(shù)的圖象可知x1+x2>1,a>1,∴﹣>1.設方程ax2+(b﹣)x+c=1(a≠1)的兩根為a,b,則a+b=﹣=﹣+,∵a>1,∴>1,∴a+b>1.考點:拋物線與x軸的交點4、D【分析】根據(jù)旋轉的性質知,,然后利用三角形內角和定理進行求解.【詳解】∵繞點按逆時針方向旋轉后與重合,∴,,∴,故選D.【點睛】本題考查了旋轉的性質,三角形內角和定理,熟知旋轉角的定義與旋轉后對應邊相等是解題的關鍵.5、C【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質可得出,再代入AD=4,AB=6,BC=12即可求出DE的長.【詳解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴DE=1.故選:C.【點睛】此題考查相似三角形的判定及性質,平行于三角形一邊的直線與三角形的兩邊相交,所截出的三角形與原三角形相似,故而依次得到線段成比例,得到線段的長.6、C【分析】找到從正面看所得到的圖形即可.【詳解】解:它的主視圖是:故選:C.【點睛】本題考查了三視圖的知識,掌握主視圖是解題的關鍵.7、D【解析】分析:直接利用反比例函數(shù)的性質分析得出答案.詳解:∵點(﹣1,y1),(﹣1,y1),(3,y3)在雙曲線y=(k<0)上,∴(﹣1,y1),(﹣1,y1)分布在第二象限,(3,y3)在第四象限,每個象限內,y隨x的增大而增大,∴y3<y1<y1.故選:D.點睛:此題主要考查了反比例函數(shù)的性質,正確掌握反比例函數(shù)增減性是解題關鍵.8、D【分析】首先將代入二次函數(shù),求出,然后利用根的判別式和求根公式即可判定的取值范圍.【詳解】將代入二次函數(shù),得∴∴方程為∴∵∴故答案為D.【點睛】此題主要考查二次函數(shù)與一元二次方程的綜合應用,熟練掌握,即可解題.9、B【分析】根據(jù)表中各對應點的特征和拋物線的對稱性求出拋物線的解析式即可判斷.得出c=3,拋物線的對稱軸為x=1.5,頂點坐標為(1,5),拋物線開口向下,【詳解】解:由題意得出:,解得,∴拋物線的解析式為:拋物線的對稱軸為x=1.5,頂點坐標為(1,5),拋物線開口向下∵a=-1<0,∴選項A正確;∵當時,的值先隨值的增大而增大,后隨隨值的增大而增大,∴選項B錯誤;∵當時,的值先隨值的增大而增大,因此當x<0時,,∴選項C正確;∵原方程可化為,,∴有兩個不相等的實數(shù)根,選項D正確.故答案為B.【點睛】本題考查的知識點是二次函數(shù)的圖象與性質,根據(jù)題目得出拋物線解析式是解題的關鍵.10、A【分析】根據(jù)圓心角與弧的關系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為A.【點睛】本題考查的知識點是扇形面積的計算,解題關鍵是利用圓心角與弧的關系得到∠AOB=∠BOC=∠COD=60°.二、填空題(每小題3分,共24分)11、y1<y1【分析】根據(jù)反比例函數(shù)圖象上的點的坐標滿足函數(shù)解析式,即可得到y(tǒng)1,y1的值,進而即可比較大?。驹斀狻俊唿cA(﹣5,y1),B(3,y1)都在雙曲線y=上,當x=﹣5時,y1=﹣,當x=3時,y1=,∴y1<y1.故答案是:y1<y1.【點睛】本題主要考查反比例函數(shù)圖象上點的縱坐標大小比較,掌握反比例函數(shù)圖象上的點的坐標滿足函數(shù)解析式,是解題的關鍵.12、2【分析】先根據(jù)平均數(shù)的計算公式求出平均數(shù),再根據(jù)方差公式計算即可.【詳解】數(shù)據(jù)3000,2998,3002,2999,3001的平均數(shù)是:,方差是:,故答案為:【點睛】本題考查了方差的定義,熟記方差的計算順序:先差、再方、再平均.13、【解析】分析:取AB的中點M,連接ME,在AD上截取ND=DF,設DF=DN=x,則NF=x,再利用矩形的性質和已知條件證明△AME∽△FNA,利用相似三角形的性質:對應邊的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的長.詳解:取AB的中點M,連接ME,在AD上截取ND=DF,設DF=DN=x,∵四邊形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案為.點睛:本題考查了矩形的性質、相似三角形的判斷和性質以及勾股定理的運用,正確添加輔助線構造相似三角形是解題的關鍵,14、或【分析】即直線位于雙曲線下方部分,根據(jù)圖象即可得到答案.【詳解】解:即直線位于雙曲線下方部分,根據(jù)圖象可知此時或.【點睛】本題考查了一次函數(shù)和反比例函數(shù)的圖象和性質,用圖解法解不等式.15、y=﹣(x+1)2﹣2【分析】根據(jù)坐標平移規(guī)律可知平移后的頂點坐標為(﹣1,﹣2),進而可設二次函數(shù)為,再把點(0,﹣3)代入即可求解a的值,進而得平移后拋物線的函數(shù)表達式.【詳解】由題意可知,平移后的函數(shù)的頂點為(﹣1,﹣2),設平移后函數(shù)的解析式為,∵所得的拋物線經(jīng)過點(0,﹣3),∴﹣3=a﹣2,解得a=﹣1,∴平移后函數(shù)的解析式為,故答案為.【點睛】本題考查坐標與圖形變化-平移,解題的關鍵是掌握坐標平移規(guī)律:“左右平移時,橫坐標左移減右移加,縱坐標不變;上下平移時,橫坐標不變,縱坐標上移加下移減”。16、1.【分析】由反比例函數(shù)的系數(shù)k的幾何意義可知:OA?AD=2,然后可求得OA?AB的值,從而可求得矩形OABC的面積.【詳解】∵反比例函數(shù)的圖象經(jīng)過點D,∴OA?AD=2.
∵D是AB的中點,
∴AB=2AD.
∴矩形的面積=OA?AB=2AD?OA=2×2=1.故答案為1.考點:反比例函數(shù)系數(shù)k的幾何意義.17、【分析】分別找出符號,分母,分子的規(guī)律,從而得出第n個分式的式子.【詳解】觀察發(fā)現(xiàn)符號規(guī)律為:正負間或出現(xiàn),故第n項的符號為:分母規(guī)律為:y的次序依次增加2、3、4等等,故第n項為:=分子規(guī)律為:x的次數(shù)為對應項的平方加1,故第n項為:故答案為:.【點睛】本題考查找尋規(guī)律,需要注意,除了尋找數(shù)字規(guī)律外,我們還要尋找符號規(guī)律.18、【分析】過點作的垂線,則得到兩個直角三角形,根據(jù)勾股定理和正余弦公式,求的長.【詳解】過作于點,設,則,因為,所以,則由勾股定理得,因為,所以,則.則.【點睛】本題考查勾股定理和正余弦公式的運用,要學會通過作輔助線得到特殊三角形,以便求解.三、解答題(共66分)19、(1)見解析;(2).【分析】(1)連結OC,如圖,根據(jù)切線的性質得OC⊥CD,則OC∥BD,所以∠1=∠3,加上∠1=∠2,從而得到∠2=∠3;
(2)連結AE交OC于G,如圖,利用圓周角定理得到∠AEB=90°,再證明四邊形CDEG為矩形得到GE=CD=8,然后利用勾股定理計算AB的長即可.【詳解】解:(1)證明:連結OC,如圖,
∵CD為切線,
∴OC⊥CD,
∵BD⊥DF,
∴OC∥BD,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴BC平分∠ABD;
(2)解:連結AE交OC于G,如圖,
∵AB為直徑,
∴∠AEB=90°,
∵OC∥BD,
∴OC⊥CD,
∴AG=EG,
易得四邊形CDEG為矩形,
∴GE=CD=8,
∴AE=2EG=16,
在Rt△ABE中,AB==,即圓的直徑為.【點睛】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了圓周角定理.20、(1);(2)當t=1時,矩形ABCD的周長有最大值,最大值為;(3)拋物線向右平移的距離是1個單位.【分析】(1)由點E的坐標設拋物線的交點式,再把點D的坐標(2,1)代入計算可得;
(2)由拋物線的對稱性得BE=OA=t,據(jù)此知AB=10-2t,再由x=t時AD=,根據(jù)矩形的周長公式列出函數(shù)解析式,配方成頂點式即可得;
(3)由t=2得出點A、B、C、D及對角線交點P的坐標,由直線GH平分矩形的面積知直線GH必過點P,根據(jù)AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點Q平移后的對應點是P知PQ是△OBD中位線,據(jù)此可得.【詳解】(1)設拋物線解析式為,當時,,點的坐標為,將點坐標代入解析式得,解得:,拋物線的函數(shù)表達式為;(2)由拋物線的對稱性得,,當時,,矩形的周長,,,,當時,矩形的周長有最大值,最大值為;(3)如圖,當時,點、、、的坐標分別為、、、,矩形對角線的交點的坐標為,直線平分矩形的面積,點是和的中點,,由平移知,是的中位線,,所以拋物線向右平移的距離是1個單位.【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質及平移變換的性質等知識點.21、40個【解析】設九(2)班有x個同學,則每個同學交換出(x﹣1)件小禮物,根據(jù)全班交換小禮物共1560件,即可得出關于x的一元二次方程,解之取其正值即可得出結論.【詳解】設九(2)班有x個同學,則每個同學交換出(x﹣1)件小禮物,根據(jù)題意得:x(x﹣1)=1560,解得:x1=40,x2=﹣39(不合題意,舍去).答:九(2)班有40個同學.【點睛】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.22、(1)60°;(2)【分析】(1)先根據(jù)垂徑定理得出BE=CE,,再根據(jù)圓周角定理即可得出∠AOC的度數(shù);(2)連接OB,先根據(jù)勾股定理得出OE的長,由弦BC=8cm,可得半徑的長,繼而求劣弧的長;【詳解】解:(1)連接OB,∵BC⊥OA,∴BE=CE,,又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB,∴∠AOC=60°;(2)連接OB得,∠BOC=2∠AOC=120°,∵弦BC=8cm,OA⊥BC,∴CE=4cm,∴OC=cm,∴劣弧的長為:【點睛】本題主要考查了勾股定理,垂徑定理,圓周角定理,掌握勾股定理,垂徑定理,圓周角定理是解題的關鍵.23、證明見解析.【解析】試題分析:由BC∥OP可得∠AOP=∠B,根據(jù)直徑所對的圓周角為直角可知∠C=90°,再根據(jù)切線的性質知∠OAP=90°,從而可證△ABC∽△POA.試題解析:證明:∵BC∥OP,∴∠AOP=∠B,∵AB是直徑,∴∠C=90°,∵PA是⊙O的切線,切點為A,∴∠OAP=90°,∴∠C=∠OAP,∴△ABC∽△POA.考點:1.切線的性質;2.相似三角形的判定.24、(1)y=﹣x2+2x+3;(2)2;(3)存在,理由見解析.【分析】(1)拋物線y=ax2+2x+c經(jīng)過點A(0,3),B(-1,0),則c=3,將點B的坐標代入拋物線表達式并解得:b=2,即可求解;
(2)函數(shù)的對稱軸為:x=1,則點D(1,4),則BE=2,DE=4,即可求解;
(3)△BFC的面積=×BC×|yF|=2|yF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年甘肅省甘南自治州公開招聘警務輔助人員筆試自考題2卷含答案
- 2022年四川省雅安市公開招聘警務輔助人員輔警筆試自考題2卷含答案
- 2022年浙江省湖州市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 晨會主持發(fā)言稿
- 廣西梧州市(2024年-2025年小學六年級語文)統(tǒng)編版隨堂測試(下學期)試卷及答案
- 2024年姿態(tài)控制推力器、推進劑貯箱項目資金需求報告代可行性研究報告
- 《應收款項新》課件
- 《稱贊教學》課件
- 2025年毛紡織、染整加工產(chǎn)品項目立項申請報告模范
- 2025年水乳型涂料項目提案報告模范
- 消防疏散演練宣傳
- 2023-2024學年廣東省廣州市越秀區(qū)九年級(上)期末語文試卷
- 五年級數(shù)學下冊 課前預習單(人教版)
- 2024-2030年中國石油壓裂支撐劑行業(yè)供需現(xiàn)狀及投資可行性分析報告
- 醫(yī)療企業(yè)未來三年戰(zhàn)略規(guī)劃
- 急診科運用PDCA循環(huán)降低急診危重患者院內轉運風險品管圈QCC專案結題
- 2024年統(tǒng)編版新教材語文小學一年級上冊全冊單元測試題及答案(共8單元)
- 四川雅安文化旅游集團有限責任公司招聘考試試卷及答案
- 醫(yī)務人員職業(yè)暴露預防及處理課件(完整版)
- DB11T 1470-2022 鋼筋套筒灌漿連接技術規(guī)程
- 中考數(shù)學真題試題(含解析)
評論
0/150
提交評論